Asymmetric RNA duplexes mediate RNA interference in mammalian cells (original) (raw)

References

  1. de Fougerolles, A., Vornlocher, H.P., Maraganore, J. & Lieberman, J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov. 6, 443–453 (2007).
    Article CAS Google Scholar
  2. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
    Article CAS Google Scholar
  3. Grimm, D. & Kay, M.A. Therapeutic application of RNAi: is mRNA targeting finally ready for prime time? J. Clin. Invest. 117, 3633–3641 (2007).
    Article CAS Google Scholar
  4. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
    Article CAS Google Scholar
  5. Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).
    Article CAS Google Scholar
  6. Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).
    Article CAS Google Scholar
  7. Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).
    Article CAS Google Scholar
  8. Rand, T.A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005).
    Article CAS Google Scholar
  9. Kim, D.H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 23, 222–226 (2005).
    Article CAS Google Scholar
  10. Siolas, D. et al. Synthetic shRNAs as potent RNAi triggers. Nat. Biotechnol. 23, 227–231 (2005).
    Article CAS Google Scholar
  11. Hohjoh, H. Enhancement of RNAi activity by improved siRNA duplexes. FEBS Lett. 557, 193–198 (2004).
    Article CAS Google Scholar
  12. Vermeulen, A. et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA 11, 674–682 (2005).
    Article CAS Google Scholar
  13. Sano, M. et al. Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res. 36, 5812–5821 (2008).
    Article CAS Google Scholar
  14. Bolcato-Bellemin, A.L., Bonnet, M.E., Creusat, G., Erbacher, P. & Behr, J.P. Sticky overhangs enhance siRNA-mediated gene silencing. Proc. Natl. Acad. Sci. USA 104, 16050–16055 (2007).
    Article CAS Google Scholar
  15. Ui-Tei, K. et al. Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res. 36, 2136–2151 (2008).
    Article CAS Google Scholar
  16. Chen, P.Y. et al. Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 14, 263–274 (2008).
    Article CAS Google Scholar
  17. Clark, P.R., Pober, J.S. & Kluger, M.S. Knockdown of TNFR1 by the sense strand of an ICAM-1 siRNA: dissection of an off-target effect. Nucleic Acids Res. 36, 1081–1097 (2008).
    Article CAS Google Scholar
  18. Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).
    Article CAS Google Scholar
  19. Scacheri, P.C. et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1892–1897 (2004).
    Article CAS Google Scholar
  20. Tschuch, C. et al. Off-target effects of siRNA specific for GFP. BMC Mol. Biol. 9, 60 (2008).
    Article Google Scholar
  21. Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H. & Williams, B.R. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).
    Article CAS Google Scholar
  22. Xiang, S., Fruehauf, J. & Li, C.J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat. Biotechnol. 24, 697–702 (2006).
    Article CAS Google Scholar
  23. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).
    Article CAS Google Scholar
  24. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).
    Article CAS Google Scholar
  25. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).
    Article CAS Google Scholar
  26. Lin, X. et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 33, 4527–4535 (2005).
    Article CAS Google Scholar
  27. Chu, C.Y. & Rana, T.M. Potent RNAi by short RNA triggers. RNA 14, 1714–1719 (2008).
    Article CAS Google Scholar
  28. Iorns, E., Lord, C.J., Turner, N. & Ashworth, A. Utilizing RNA interference to enhance cancer drug discovery. Nat. Rev. Drug Discov. 6, 556–568 (2007).
    Article CAS Google Scholar
  29. Corey, D.R. Chemical modification: the key to clinical application of RNA interference? J. Clin. Invest. 117, 3615–3622 (2007).
    Article CAS Google Scholar

Download references