The binary protein-protein interaction landscape of Escherichia coli (original) (raw)
Arifuzzaman, M. et al. Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res.16, 686–691 (2006). ArticleCAS Google Scholar
Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature433, 531–537 (2005). ArticleCAS Google Scholar
Hu, P. et al. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol.7, e96 (2009). Article Google Scholar
Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature437, 1173–1178 (2005). ArticleCAS Google Scholar
Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science322, 104–110 (2008). ArticleCAS Google Scholar
Titz, B. et al. The binary protein interactome of Treponema pallidum–the syphilis spirochete. PLoS ONE3, e2292 (2008). Article Google Scholar
Uetz, P. et al. Herpesviral protein networks and their interaction with the human proteome. Science311, 239–242 (2006). ArticleCAS Google Scholar
Rajagopala, S.V. et al. The Escherichia coli K-12 ORFeome: a resource for comparative molecular microbiology. BMC Genomics11, 470 (2010). Article Google Scholar
Rajagopala, S.V. & Uetz, P. Analysis of protein-protein interactions using high-throughput yeast two-hybrid screens. Methods Mol. Biol.781, 1–29 (2011). ArticleCAS Google Scholar
Goll, J. et al. MPIDB: the microbial protein interaction database. Bioinformatics24, 1743–1744 (2008). ArticleCAS Google Scholar
Rajagopala, S.V. et al. MPI-LIT: a literature-curated dataset of microbial binary protein–protein interactions. Bioinformatics24, 2622–2627 (2008). ArticleCAS Google Scholar
Braun, P. et al. An experimentally derived confidence score for binary protein-protein interactions. Nat. Methods6, 91–97 (2009). ArticleCAS Google Scholar
Chen, Y.C., Rajagopala, S.V., Stellberger, T. & Uetz, P. Exhaustive benchmarking of the yeast two-hybrid system. Nat. Methods7, 667–668 (2010). ArticleCAS Google Scholar
Vidalain, P.O., Boxem, M., Ge, H., Li, S. & Vidal, M. Increasing specificity in high-throughput yeast two-hybrid experiments. Methods32, 363–370 (2004). ArticleCAS Google Scholar
Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nat. Methods6, 83–90 (2009). ArticleCAS Google Scholar
Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science307, 1621–1625 (2005). ArticleCAS Google Scholar
Rajagopala, S.V., Sikorski, P., Caufield, J.H., Tovchigrechko, A. & Uetz, P. Studying protein complexes by the yeast two-hybrid system. Methods58, 392–399 (2012). ArticleCAS Google Scholar
Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res.28, 235–242 (2000). ArticleCAS Google Scholar
Barabasi, A.L. Scale-free networks: a decade and beyond. Science325, 412–413 (2009). ArticleCAS Google Scholar
Collins, S.R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature446, 806–810 (2007). ArticleCAS Google Scholar
Wang, J., Du, Z., Payattakool, R., Yu, P.S. & Chen, C.J. A new method to measure the semantic similarity of GO terms. Bioinformatics23, 1274–1281 (2007). ArticleCAS Google Scholar
Aloy, P. et al. Structure-based assembly of protein complexes in yeast. Science303, 2026–2029 (2004). ArticleCAS Google Scholar
Lasker, K. et al. Integrative structure modeling of macromolecular assemblies from proteomics data. Mol. Cell. Proteomics9, 1689–1702 (2010). ArticleCAS Google Scholar
Babu, M. et al. Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways. PLoS Genet.7, e1002377 (2011). ArticleCAS Google Scholar
Bandyopadhyay, S., Kelley, R., Krogan, N.J. & Ideker, T. Functional maps of protein complexes from quantitative genetic interaction data. PLOS Comput. Biol.4, e1000065 (2008). Article Google Scholar
Beltrao, P., Cagney, G. & Krogan, N.J. Quantitative genetic interactions reveal biological modularity. Cell141, 739–745 (2010). ArticleCAS Google Scholar
Boone, C., Bussey, H. & Andrews, B.J. Exploring genetic interactions and networks with yeast. Nat. Rev. Genet.8, 437–449 (2007). ArticleCAS Google Scholar
Costanzo, M. et al. The genetic landscape of a cell. Science327, 425–431 (2010). ArticleCAS Google Scholar
Butland, G. et al. eSGA: E. coli synthetic genetic array analysis. Nat. Methods5, 789–795 (2008). ArticleCAS Google Scholar
Brohee, S. & van Helden, J. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics7, 488 (2006). Article Google Scholar
Babu, M. Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli. PLoS Genet. (in the press).
Oliver, D.B. & Beckwith, J. E. coli mutant pleiotropically defective in the export of secreted proteins. Cell25, 765–772 (1981). ArticleCAS Google Scholar
Rajagopala, S.V. et al. The protein network of bacterial motility. Mol. Syst. Biol.3, 128 (2007). Article Google Scholar
Bershtein, S., Mu, W., Serohijos, A.W., Zhou, J. & Shakhnovich, E.I. Protein quality control acts on folding intermediates to shape the effects of mutations on organismal fitness. Mol. Cell49, 133–144 (2013). ArticleCAS Google Scholar
Dixon, S.J., Costanzo, M., Baryshnikova, A., Andrews, B. & Boone, C. Systematic mapping of genetic interaction networks. Annu. Rev. Genet.43, 601–625 (2009). ArticleCAS Google Scholar
Typas, A. et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell143, 1097–1109 (2010). ArticleCAS Google Scholar
Matthews, L.R. et al. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs”. Genome Res.11, 2120–2126 (2001). ArticleCAS Google Scholar
Sharan, R. et al. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA102, 1974–1979 (2005). ArticleCAS Google Scholar
Singleton, M.R., Dillingham, M.S., Gaudier, M., Kowalczykowski, S.C. & Wigley, D.B. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature432, 187–193 (2004). ArticleCAS Google Scholar
Cingolani, G. & Duncan, T.M. Structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli in an autoinhibited conformation. Nat. Struct. Mol. Biol.18, 701–707 (2011). ArticleCAS Google Scholar
Hallez, R., Letesson, J.J., Vandenhaute, J. & De Bolle, X. Gateway-based destination vectors for functional analyses of bacterial ORFeomes: application to the Min system in Brucella abortus. Appl. Environ. Microbiol.73, 1375–1379 (2007). ArticleCAS Google Scholar
Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature440, 631–636 (2006). ArticleCAS Google Scholar
Faith, J.J. et al. Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Res.36, D866–D870 (2008). ArticleCAS Google Scholar
Nichols, R.J. et al. Phenotypic landscape of a bacterial cell. Cell144, 143–156 (2011). ArticleCAS Google Scholar
Hagberg, A.A. et al. Exploring network structure, dynamics, and function using NetworkX. Proceedings of the 7th Python in Science Conference 11–15 (2008).
Xu, Z. & Hao, B. CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Nucleic Acids Res.37, W174–W178 (2009). ArticleCAS Google Scholar
Alix, B., Boubacar, D.A. & Vladimir, M.T.-R.E.X. a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res.40, W573–W579 (2012). ArticleCAS Google Scholar
Remm, M., Storm, C.E. & Sonnhammer, E.L. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol.314, 1041–1052 (2001). ArticleCAS Google Scholar