Imagining the future of bioimage analysis (original) (raw)

References

  1. Frisby, J.P. & Stone, J.V. Seeing: The Computational Approach to Biological Vision (The MIT Press, Cambridge, MA, USA, 2010).
    Google Scholar
  2. Ji, N., Shroff, H., Zhong, H. & Betzig, E. Advances in the speed and resolution of light microscopy. Curr. Opin. Neurobiol. 18, 605–616 (2008).
    Article CAS Google Scholar
  3. Prewitt, J.M.S. & Mendelsohn, M.L. The analysis of cell images. Ann. NY Acad. Sci. 128, 1035–1053 (1966).
    Article CAS Google Scholar
  4. Peng, H. et al. Bioimage informatics for big data. Adv. Anat. Embryol. Cell Biol. 219, 263–272 (2016).
    Article Google Scholar
  5. Eliceiri, K.W. et al. Biological imaging software tools. Nat. Methods 9, 697–710 (2012).
    Article CAS Google Scholar
  6. Szeliski, R. Computer Vision: Algorithms and Applications (Springer, London, UK, 2011).
    Book Google Scholar
  7. Sarder, P. & Nehorai, A. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 23, 32–45 (2006).
    Article Google Scholar
  8. Qu, L., Long, F. & Peng, H. 3-D registration of biological images and models: registration of microscopic images and its uses in segmentation and annotation. IEEE Signal Process. Mag. 32, 70–77 (2015).
    Article Google Scholar
  9. Wu, Q., Merchant, F.A. & Castleman, K.R. Microscope Image Processing (Academic Press, Burlington, MA, USA, 2008).
    Google Scholar
  10. Meijering, E. Cell segmentation: 50 years down the road. IEEE Signal Process. Mag. 29, 140–145 (2012).
    Article Google Scholar
  11. Meijering, E., Dzyubachyk, O., Smal, I. & van Cappellen, W.A. Tracking in cell and developmental biology. Semin. Cell Dev. Biol. 20, 894–902 (2009).
    Article Google Scholar
  12. Pincus, Z. & Theriot, J.A. Comparison of quantitative methods for cell-shape analysis. J. Microsc. 227, 140–156 (2007).
    Article CAS Google Scholar
  13. Depeursinge, A., Foncubierta-Rodriguez, A., Van De Ville, D. & Müller, H. Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med. Image Anal. 18, 176–196 (2014).
    Article Google Scholar
  14. Shamir, L., Delaney, J.D., Orlov, N., Eckley, D.M. & Goldberg, I.G. Pattern recognition software and techniques for biological image analysis. PLoS Comput. Biol. 6, e1000974 (2010).
    Article Google Scholar
  15. Walter, T. et al. Visualization of image data from cells to organisms. Nat. Methods 7 (Suppl.), S26–S41 (2010).
    Article CAS Google Scholar
  16. Buck, T.E., Li, J., Rohde, G.K. & Murphy, R.F. Toward the virtual cell: automated approaches to building models of subcellular organization “learned” from microscopy images. BioEssays 34, 791–799 (2012).
    Article CAS Google Scholar
  17. Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).
    Article CAS Google Scholar
  18. Takemura, S.Y. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175–181 (2013).
    Article CAS Google Scholar
  19. Ponti, A., Machacek, M., Gupton, S.L., Waterman-Storer, C.M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).
    Article CAS Google Scholar
  20. Spanjaard, E. et al. Quantitative imaging of focal adhesion dynamics and their regulation by HGF and Rap1 signaling. Exp. Cell Res. 330, 382–397 (2015).
    Article CAS Google Scholar
  21. Danuser, G. Computer vision in cell biology. Cell 147, 973–978 (2011).
    Article CAS Google Scholar
  22. Cardona, A. & Tomancak, P. Current challenges in open-source bioimage informatics. Nat. Methods 9, 661–665 (2012).
    Article CAS Google Scholar
  23. Prins, P. et al. Toward effective software solutions for big biology. Nat. Biotechnol. 33, 686–687 (2015).
    Article CAS Google Scholar
  24. Carpenter, A.E., Kamentsky, L. & Eliceiri, K.W. A call for bioimaging software usability. Nat. Methods 9, 666–670 (2012).
    Article CAS Google Scholar
  25. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (The MIT Press, Cambridge, MA, USA, 2010).
    Book Google Scholar
  26. Ter Haar Romeny, B.M. Front-End Vision and Multi-Scale Image Analysis (Springer, Berlin, Germany, 2003).
    Book Google Scholar
  27. Pridmore, T.P., French, A.P. & Pound, M.P. What lies beneath: underlying assumptions in bioimage analysis. Trends Plant Sci. 17, 688–692 (2012).
    Article CAS Google Scholar
  28. Dudai, Y. How big is human memory, or on being just useful enough. Learn. Mem. 3, 341–365 (1997).
    Article CAS Google Scholar
  29. Brady, T.F., Konkle, T. & Alvarez, G.A. A review of visual memory capacity: beyond individual items and toward structured representations. J. Vis. 11, 4 (2011).
    Article Google Scholar
  30. Bishop, C.M. Pattern Recognition and Machine Learning (Springer, New York, NY, USA, 2006).
    Google Scholar
  31. Sommer, C. & Gerlich, D.W. Machine learning in cell biology - teaching computers to recognize phenotypes. J. Cell Sci. 126, 5529–5539 (2013).
    Article CAS Google Scholar
  32. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
    Article CAS Google Scholar
  33. Price, K. Anything you can do, I can do better (no you can't). Comput. Vis. Graph. Image Process. 36, 387–391 (1986).
    Article Google Scholar
  34. Gillette, T.A., Brown, K.M., Svoboda, K., Liu, Y. & Ascoli, G.A. DIADEMChallenge.Org: a compendium of resources fostering the continuous development of automated neuronal reconstruction. Neuroinform. 9, 303–304 (2011).
    Article Google Scholar
  35. Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods 11, 281–289 (2014).
    Article CAS Google Scholar
  36. Maška, M. et al. A benchmark for comparison of cell tracking algorithms. Bioinformatics 30, 1609–1617 (2014).
    Article Google Scholar
  37. Sage, D. et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods 12, 717–724 (2015).
    Article CAS Google Scholar
  38. Roux, L. et al. Mitosis detection in breast cancer histological images: An ICPR 2012 contest. J. Pathol. Inform. 4, 8 (2013).
    Article Google Scholar
  39. Veta, M. et al. Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 20, 237–248 (2015).
    Article Google Scholar
  40. Peng, H. et al. BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron 87, 252–256 (2015).
    Article CAS Google Scholar
  41. Ljosa, V., Sokolnicki, K.L. & Carpenter, A.E. Annotated high-throughput microscopy image sets for validation. Nat. Methods 9, 637 (2012).
    Article CAS Google Scholar
  42. Ince, D.C., Hatton, L. & Graham-Cumming, J. The case for open computer programs. Nature 482, 485–488 (2012).
    Article CAS Google Scholar
  43. Scherf, N. & Huisken, J. The smart and gentle microscope. Nat. Biotechnol. 33, 815–818 (2015).
    Article CAS Google Scholar
  44. Long, B., Li, L., Knoblich, U., Zeng, H. & Peng, H. 3D image-guided automatic pipette positioning for single cell experiments in vivo. Sci. Rep. 5, 18426 (2015).
    Article CAS Google Scholar
  45. Fernández-González, R., Muñoz-Barrutia, A., Barcellos-Hoff, M.H. & Ortiz- de-Solorzano, C. Quantitative in vivo microscopy: the return from the 'omics'. Curr. Opin. Biotechnol. 17, 501–510 (2006).
    Article Google Scholar
  46. Swedlow, J.R., Zanetti, G. & Best, C. Channeling the data deluge. Nat. Methods 8, 463–465 (2011).
    Article CAS Google Scholar
  47. Lahat, D., Adali, T. & Jutten, C. Multimodal data fusion: an overview of methods, challenges, and prospects. Proc. IEEE 103, 1449–1477 (2015).
    Article Google Scholar
  48. Ljosa, V. et al. Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment. J. Biomol. Screen. 18, 1321–1329 (2013).
    Article CAS Google Scholar
  49. Peng, H., Ruan, Z., Long, F., Simpson, J.H. & Myers, E.W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28, 348–353 (2010).
    Article CAS Google Scholar
  50. Kreshuk, A., Koethe, U., Pax, E., Bock, D.D. & Hamprecht, F.A. Automated detection of synapses in serial section transmission electron microscopy image stacks. PLoS One 9, e87351 (2014).
    Article Google Scholar

Download references