Imagining the future of bioimage analysis (original) (raw)
References
Frisby, J.P. & Stone, J.V. Seeing: The Computational Approach to Biological Vision (The MIT Press, Cambridge, MA, USA, 2010). Google Scholar
Ji, N., Shroff, H., Zhong, H. & Betzig, E. Advances in the speed and resolution of light microscopy. Curr. Opin. Neurobiol.18, 605–616 (2008). ArticleCAS Google Scholar
Prewitt, J.M.S. & Mendelsohn, M.L. The analysis of cell images. Ann. NY Acad. Sci.128, 1035–1053 (1966). ArticleCAS Google Scholar
Peng, H. et al. Bioimage informatics for big data. Adv. Anat. Embryol. Cell Biol.219, 263–272 (2016). Article Google Scholar
Eliceiri, K.W. et al. Biological imaging software tools. Nat. Methods9, 697–710 (2012). ArticleCAS Google Scholar
Szeliski, R. Computer Vision: Algorithms and Applications (Springer, London, UK, 2011). Book Google Scholar
Sarder, P. & Nehorai, A. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag.23, 32–45 (2006). Article Google Scholar
Qu, L., Long, F. & Peng, H. 3-D registration of biological images and models: registration of microscopic images and its uses in segmentation and annotation. IEEE Signal Process. Mag.32, 70–77 (2015). Article Google Scholar
Wu, Q., Merchant, F.A. & Castleman, K.R. Microscope Image Processing (Academic Press, Burlington, MA, USA, 2008). Google Scholar
Meijering, E. Cell segmentation: 50 years down the road. IEEE Signal Process. Mag.29, 140–145 (2012). Article Google Scholar
Meijering, E., Dzyubachyk, O., Smal, I. & van Cappellen, W.A. Tracking in cell and developmental biology. Semin. Cell Dev. Biol.20, 894–902 (2009). Article Google Scholar
Pincus, Z. & Theriot, J.A. Comparison of quantitative methods for cell-shape analysis. J. Microsc.227, 140–156 (2007). ArticleCAS Google Scholar
Depeursinge, A., Foncubierta-Rodriguez, A., Van De Ville, D. & Müller, H. Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med. Image Anal.18, 176–196 (2014). Article Google Scholar
Shamir, L., Delaney, J.D., Orlov, N., Eckley, D.M. & Goldberg, I.G. Pattern recognition software and techniques for biological image analysis. PLoS Comput. Biol.6, e1000974 (2010). Article Google Scholar
Walter, T. et al. Visualization of image data from cells to organisms. Nat. Methods7 (Suppl.), S26–S41 (2010). ArticleCAS Google Scholar
Buck, T.E., Li, J., Rohde, G.K. & Murphy, R.F. Toward the virtual cell: automated approaches to building models of subcellular organization “learned” from microscopy images. BioEssays34, 791–799 (2012). ArticleCAS Google Scholar
Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature464, 721–727 (2010). ArticleCAS Google Scholar
Takemura, S.Y. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature500, 175–181 (2013). ArticleCAS Google Scholar
Ponti, A., Machacek, M., Gupton, S.L., Waterman-Storer, C.M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science305, 1782–1786 (2004). ArticleCAS Google Scholar
Spanjaard, E. et al. Quantitative imaging of focal adhesion dynamics and their regulation by HGF and Rap1 signaling. Exp. Cell Res.330, 382–397 (2015). ArticleCAS Google Scholar
Cardona, A. & Tomancak, P. Current challenges in open-source bioimage informatics. Nat. Methods9, 661–665 (2012). ArticleCAS Google Scholar
Prins, P. et al. Toward effective software solutions for big biology. Nat. Biotechnol.33, 686–687 (2015). ArticleCAS Google Scholar
Carpenter, A.E., Kamentsky, L. & Eliceiri, K.W. A call for bioimaging software usability. Nat. Methods9, 666–670 (2012). ArticleCAS Google Scholar
Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (The MIT Press, Cambridge, MA, USA, 2010). Book Google Scholar
Ter Haar Romeny, B.M. Front-End Vision and Multi-Scale Image Analysis (Springer, Berlin, Germany, 2003). Book Google Scholar
Pridmore, T.P., French, A.P. & Pound, M.P. What lies beneath: underlying assumptions in bioimage analysis. Trends Plant Sci.17, 688–692 (2012). ArticleCAS Google Scholar
Dudai, Y. How big is human memory, or on being just useful enough. Learn. Mem.3, 341–365 (1997). ArticleCAS Google Scholar
Brady, T.F., Konkle, T. & Alvarez, G.A. A review of visual memory capacity: beyond individual items and toward structured representations. J. Vis.11, 4 (2011). Article Google Scholar
Bishop, C.M. Pattern Recognition and Machine Learning (Springer, New York, NY, USA, 2006). Google Scholar
Sommer, C. & Gerlich, D.W. Machine learning in cell biology - teaching computers to recognize phenotypes. J. Cell Sci.126, 5529–5539 (2013). ArticleCAS Google Scholar
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature521, 436–444 (2015). ArticleCAS Google Scholar
Price, K. Anything you can do, I can do better (no you can't). Comput. Vis. Graph. Image Process.36, 387–391 (1986). Article Google Scholar
Gillette, T.A., Brown, K.M., Svoboda, K., Liu, Y. & Ascoli, G.A. DIADEMChallenge.Org: a compendium of resources fostering the continuous development of automated neuronal reconstruction. Neuroinform.9, 303–304 (2011). Article Google Scholar
Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods11, 281–289 (2014). ArticleCAS Google Scholar
Maška, M. et al. A benchmark for comparison of cell tracking algorithms. Bioinformatics30, 1609–1617 (2014). Article Google Scholar
Sage, D. et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods12, 717–724 (2015). ArticleCAS Google Scholar
Roux, L. et al. Mitosis detection in breast cancer histological images: An ICPR 2012 contest. J. Pathol. Inform.4, 8 (2013). Article Google Scholar
Veta, M. et al. Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal.20, 237–248 (2015). Article Google Scholar
Peng, H. et al. BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron87, 252–256 (2015). ArticleCAS Google Scholar
Ince, D.C., Hatton, L. & Graham-Cumming, J. The case for open computer programs. Nature482, 485–488 (2012). ArticleCAS Google Scholar
Scherf, N. & Huisken, J. The smart and gentle microscope. Nat. Biotechnol.33, 815–818 (2015). ArticleCAS Google Scholar
Long, B., Li, L., Knoblich, U., Zeng, H. & Peng, H. 3D image-guided automatic pipette positioning for single cell experiments in vivo. Sci. Rep.5, 18426 (2015). ArticleCAS Google Scholar
Fernández-González, R., Muñoz-Barrutia, A., Barcellos-Hoff, M.H. & Ortiz- de-Solorzano, C. Quantitative in vivo microscopy: the return from the 'omics'. Curr. Opin. Biotechnol.17, 501–510 (2006). Article Google Scholar
Swedlow, J.R., Zanetti, G. & Best, C. Channeling the data deluge. Nat. Methods8, 463–465 (2011). ArticleCAS Google Scholar
Lahat, D., Adali, T. & Jutten, C. Multimodal data fusion: an overview of methods, challenges, and prospects. Proc. IEEE103, 1449–1477 (2015). Article Google Scholar
Ljosa, V. et al. Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment. J. Biomol. Screen.18, 1321–1329 (2013). ArticleCAS Google Scholar
Peng, H., Ruan, Z., Long, F., Simpson, J.H. & Myers, E.W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol.28, 348–353 (2010). ArticleCAS Google Scholar
Kreshuk, A., Koethe, U., Pax, E., Bock, D.D. & Hamprecht, F.A. Automated detection of synapses in serial section transmission electron microscopy image stacks. PLoS One9, e87351 (2014). Article Google Scholar