Rhee, H.-W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science339, 1328–1331 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lam, S.S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods12, 51–54 (2015). ArticleCASPubMed Google Scholar
Choi-Rhee, E., Schulman, H. & Cronan, J.E. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci.13, 3043–3050 (2004). ArticleCASPubMedPubMed Central Google Scholar
Roux, K.J., Kim, D.I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol.196, 801–810 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lobingier, B.T. et al. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell169, 350–360.e12 (2017). ArticleCASPubMedPubMed Central Google Scholar
Kaewsapsak, P., Shechner, D.M., Mallard, W., Rinn, J.L. & Ting, A.Y. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. eLife6, e29224 (2017). ArticlePubMedPubMed Central Google Scholar
Martell, J.D. et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol.30, 1143–1148 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kim, D.I. et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl. Acad. Sci. USA111, E2453–E2461 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lin, Q. et al. Screening of proximal and interacting proteins in rice protoplasts by proximity-dependent biotinylation. Front. Plant Sci.8, 749 (2017). ArticlePubMedPubMed Central Google Scholar
Morriswood, B. et al. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryot. Cell12, 356–367 (2013). ArticleCASPubMedPubMed Central Google Scholar
Chen, A.L. et al. Novel components of the Toxoplasma inner membrane complex revealed by BioID. MBio6, e02357–e14 (2015). CASPubMedPubMed Central Google Scholar
Nadipuram, S.M. et al. In vivo biotinylation of the toxoplasma parasitophorous vacuole reveals novel dense granule proteins important for parasite growth and pathogenesis. MBio7, e00808–16 (2016). ArticleCASPubMedPubMed Central Google Scholar
Chen, A.L. et al. Novel insights into the composition and function of the Toxoplasma IMC sutures. Cell. Microbiol.19, e12678 (2017). ArticleCAS Google Scholar
Long, S. et al. Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii. PLoS Pathog.13, e1006379 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Zhou, Q., Hu, H. & Li, Z. An EF-hand-containing protein in Trypanosoma brucei regulates cytokinesis initiation by maintaining the stability of the cytokinesis initiation factor CIF1. J. Biol. Chem.291, 14395–14409 (2016). ArticleCASPubMedPubMed Central Google Scholar
Dang, H.Q. et al. Proximity interactions among basal body components in Trypanosoma brucei identify novel regulators of basal body biogenesis and inheritance. MBio8, e02120–16 (2017). ArticleCASPubMedPubMed Central Google Scholar
Kehrer, J., Frischknecht, F. & Mair, G.R. Proteomic analysis of the Plasmodium berghei gametocyte egressome and vesicular bioID of osmiophilic body proteins identifies merozoite TRAP-like protein (MTRAP) as an essential factor for parasite transmission. Mol. Cell. Proteomics15, 2852–2862 (2016). ArticleCASPubMedPubMed Central Google Scholar
Gaji, R.Y. et al. Phosphorylation of a myosin motor by TgCDPK3 facilitates rapid initiation of motility during Toxoplasma gondii egress. PLoS Pathog.11, e1005268 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Batsios, P., Ren, X., Baumann, O., Larochelle, D.A. & Gräf, R. Src1 is a protein of the inner nuclear membrane interacting with the Dictyostelium Lamin NE81. Cells5, 13 (2016). ArticlePubMed CentralCAS Google Scholar
Meyer, I. et al. CP39, CP75 and CP91 are major structural components of the Dictyostelium centrosome's core structure. Eur. J. Cell Biol.96, 119–130 (2017). ArticleCASPubMed Google Scholar
Opitz, N. et al. Capturing the Asc1p/_r_eceptor for _a_ctivated _C k_inase 1 (RACK1) microenvironment at the head region of the 40S ribosome with quantitative BioID in yeast. Mol. Cell. Proteomics16, 2199–2218 (2017). ArticleCASPubMedPubMed Central Google Scholar
Birendra, K.C. et al. VRK2A is an A-type lamin-dependent nuclear envelope kinase that phosphorylates BAF. Mol. Biol. Cell28, 2241–2250 (2017). ArticleCASPubMed Central Google Scholar
Jung, E.M. et al. Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior. Nat. Neurosci.20, 1694–1707 (2017). ArticleCASPubMedPubMed Central Google Scholar
Martell, J.D. et al. A split horseradish peroxidase for the detection of intercellular protein-protein interactions and sensitive visualization of synapses. Nat. Biotechnol.34, 774–780 (2016). ArticleCASPubMedPubMed Central Google Scholar
Bobrow, M.N., Harris, T.D., Shaughnessy, K.J. & Litt, G.J. Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol. Methods125, 279–285 (1989). ArticleCASPubMed Google Scholar
Hung, V. et al. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. eLife6, e24463 (2017). ArticlePubMedPubMed Central Google Scholar
Dingar, D. et al. BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. J. Proteomics118, 95–111 (2015). ArticleCASPubMed Google Scholar
Reinke, A.W., Balla, K.M., Bennett, E.J. & Troemel, E.R. Identification of microsporidia host-exposed proteins reveals a repertoire of rapidly evolving proteins. Nat. Commun.8, 14023 (2017). ArticleCASPubMedPubMed Central Google Scholar
Reinke, A.W., Mak, R., Troemel, E.R. & Bennett, E.J. In vivo mapping of tissue- and subcellular-specific proteomes in Caenorhabditis elegans. Sci. Adv.3, e1602426 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Chen, C.-L. Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proc. Natl. Acad. Sci. USA112, 12093–12098 (2015). ArticleCASPubMedPubMed Central Google Scholar
Weaver, L.H., Kwon, K., Beckett, D. & Matthews, B.W. Corepressor-induced organization and assembly of the biotin repressor: a model for allosteric activation of a transcriptional regulator. Proc. Natl. Acad. Sci. USA98, 6045–6050 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chao, G. et al. Isolating and engineering human antibodies using yeast surface display. Nat. Protoc.1, 755–768 (2006). ArticleCASPubMed Google Scholar
Jan, C.H., Williams, C.C. & Weissman, J.S. LOCAL TRANSLATION. response to comment on “Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling”. Science348, 1217 (2015). ArticleCASPubMed Google Scholar
Colby, D.W. et al. Engineering antibody affinity by yeast surface display. Methods Enzymol.388, 348–358 (2004). ArticleCASPubMed Google Scholar
Ausubel, F.M. et al. Current protocols in molecular biology. Mol. Biol.1, 13.2.1 (2003). Google Scholar
Wood, Z.A., Weaver, L.H., Brown, P.H., Beckett, D. & Matthews, B.W. Co-repressor induced order and biotin repressor dimerization: a case for divergent followed by convergent evolution. J. Mol. Biol.357, 509–523 (2006). ArticleCASPubMed Google Scholar
Xu, Y. & Beckett, D. Evidence for interdomain interaction in the Escherichia coli repressor of biotin biosynthesis from studies of an N-terminal domain deletion mutant. Biochemistry35, 1783–1792 (1996). ArticleCASPubMed Google Scholar
Eginton, C., Cressman, W.J., Bachas, S., Wade, H. & Beckett, D. Allosteric coupling via distant disorder-to-order transitions. J. Mol. Biol.427, 1695–1704 (2015). ArticleCASPubMed Google Scholar
Hung, V. et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat. Protoc.11, 456–475 (2016). ArticleCASPubMedPubMed Central Google Scholar
Apweiler, R. et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res.45, D158–D169 (2017). ArticleCAS Google Scholar
Käll, L., Krogh, A. & Sonnhammer, E.L.L. A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol.338, 1027–1036 (2004). ArticlePubMedCAS Google Scholar
Muthusamy, B. et al. Plasma Proteome Database as a resource for proteomics research. Proteomics5, 3531–3536 (2005). ArticleCASPubMed Google Scholar
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E.L.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol.305, 567–580 (2001). ArticleCASPubMed Google Scholar
Calvo, S.E., Clauser, K.R. & Mootha, V.K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res.44, D1251–D1257 (2016). ArticleCASPubMed Google Scholar
Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science321, 956–960 (2008). ArticleCASPubMed Google Scholar
Markstein, M., Pitsouli, C., Villalta, C., Celniker, S.E. & Perrimon, N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat. Genet.40, 476–483 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ortega-Cuellar, D. et al. Biotin starvation with adequate glucose provision causes paradoxical changes in fuel metabolism gene expression similar in rat (Rattus norvegicus), nematode (Caenorhabditis elegans) and yeast (Saccharomycces cerevisiae). J. Nutrigenet. Nutrigenomics3, 18–30 (2010). ArticleCASPubMed Google Scholar
Leung, B., Hermann, G.J. & Priess, J.R. Organogenesis of the Caenorhabditis elegans intestine. Dev. Biol.216, 114–134 (1999). ArticleCASPubMed Google Scholar