Rescue and propagation of fully retargeted oncolytic measles viruses (original) (raw)
References
Peng, K.W. et al. Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood98, 2002–2007 (2001). ArticleCASPubMed Google Scholar
Peng, K.-W. et al. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res.62, 4656–4662 (2002). CASPubMed Google Scholar
Grote, D. et al. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood97, 3746–3754 (2001). ArticleCASPubMed Google Scholar
Phuong, L.K. et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res.63, 2462–2469 (2003). CASPubMed Google Scholar
Dorig, R.E., Marcil, A., Chopra, A. & Richardson, C.D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell75, 295–305 (1993). ArticleCASPubMed Google Scholar
Naniche, D. et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol.67, 6025–6032 (1993). CASPubMedPubMed Central Google Scholar
Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature406, 893–897 (2000). ArticleCASPubMed Google Scholar
Hahm, B. et al. Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human signaling lymphocytic activation molecule. J. Virol.77, 3505–3515 (2003). ArticleCASPubMedPubMed Central Google Scholar
Schneider-Schaulies, S., Bieback, K., Avota, E., Klagge, I. & ter Meulen, V. Regulation of gene expression in lymphocytes and antigen-presenting cells by measles virus: consequences for immunomodulation. J. Mol. Med.80, 73–85 (2002). ArticleCASPubMed Google Scholar
McQuaid, S. & Cosby, S.L. An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab. Invest.82, 403–409 (2002). ArticleCASPubMed Google Scholar
Kaufmann, M. et al. Crystal structure of the anti-His tag antibody 3D5 single-chain fragment complexed to its antigen. J. Mol. Biol.318, 135–147 (2002). ArticleCASPubMed Google Scholar
Masse, N., Barrett, T., Muller, C.P., Wild, T.F. & Buckland, R. Identification of a second major site for CD46 binding in the hemagglutinin protein from a laboratory strain of measles virus (MV): potential consequences for wild-type MV infection. J. Virol.76, 13034–13038 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hashimoto, K. et al. SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J. Virol.76, 6743–6749 (2002). ArticleCASPubMedPubMed Central Google Scholar
Andres, O., Obojes, K., Kim, K.S., ter Meulen, V. & Schneider-Schaulies, J. CD46- and CD150-independent endothelial cell infection with wild-type measles viruses. J. Gen. Virol.84, 1189–1197 (2003). ArticleCASPubMed Google Scholar
Mehta, K., Shahid, U. & Malavasi, F. Human CD38, a cell-surface protein with multiple functions. FASEB J.10, 1408–1417 (1996). ArticleCASPubMed Google Scholar
Carpenter, G. Receptor tyrosine kinase substrates: src homology domains and signal transduction. FASEB J.6, 3283–3289 (1992). ArticleCASPubMed Google Scholar
Kuan, C.T., Wikstrand, C.J. & Bigner, D.D. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr. Relat. Cancer8, 83–96 (2001). ArticleCASPubMed Google Scholar
Schneider, U., Bullough, F., Vongpunsawad, S., Russell, S.J. & Cattaneo, R. Recombinant measles viruses efficiently entering cells through targeted receptors. J. Virol.74, 9928–9936 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hammond, A.L. et al. Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen. J. Virol.75, 2087–2096 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bucheit, A.D. et al. An oncolytic measles virus engineered to enter cells through the CD20 antigen. Mol. Ther.7, 62–72 (2003). ArticleCASPubMed Google Scholar
Peng, K.-W., Holler, P., Orr, B., Kranz, D. & Russell, S.J. Targeting membrane fusion to specific peptide/MHC complexes through a high-affinity T-cell receptor. Gene Ther.11, 1234–1239 (2004). ArticleCASPubMed Google Scholar
Wickham, T.J. Ligand-directed targeting of genes to the site of disease. Nat. Med.9, 135–139 (2003). ArticleCASPubMed Google Scholar
Kasahara, N., Dozy, A.M. & Kan, Y.W. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science266, 1373–1376 (1994). ArticleCASPubMed Google Scholar
Laquerre, S., Anderson, D.B., Stolz, D.B. & Glorioso, J.C. Recombinant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells. J. Virol.72, 9683–9697 (1998). CASPubMedPubMed Central Google Scholar
Kanerva, A. et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol. Ther.8, 449–458 (2003). ArticleCASPubMed Google Scholar
Schmitz, H., Wigand, R. & Heinrich, W. Worldwide epidemiology of human adenovirus infections. Am. J. Epidemiol.117, 455–466 (1983). ArticleCASPubMed Google Scholar
Pollara, G., Katz, D.R. & Chain, B.M. The host response to herpes simplex virus infection. Curr. Opin. Infect. Dis.17, 199–203 (2004). ArticleCASPubMed Google Scholar
Virgin, H.W., Dermody, T.S. & Tyler, K.L. Cellular and humoral immunity to reovirus infection. Curr. Top. Microbiol. Immunol.233, 147–161 (1998). CASPubMed Google Scholar
Harrop, R., Ryan, M.G., Golding, H., Redchenko, I. & Carroll, M.W. Monitoring of human immunological responses to vaccinia virus. Methods Mol. Biol.269, 243–266 (2004). CASPubMed Google Scholar
Douglas, J.T. et al. A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat. Biotechnol.17, 470–475 (1999). ArticleCASPubMed Google Scholar
Lorimer, I.A. & Lavictoire, S.J. Targeting retrovirus to cancer cells expressing a mutant EGF receptor by insertion of a single chain antibody variable domain in the envelope glycoprotein receptor binding lobe. J. Immunol. Methods237, 147–157 (2000). ArticleCASPubMed Google Scholar
Duprex, W., McQuaid, S., Hangartner, S., Billeter, M. & Rima, B. Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J. Virol.73, 9568–9575 (1999). CASPubMedPubMed Central Google Scholar
Plemper, R.K., Hammond, A.L. & Cattaneo, R. Characterization of a region of the measles virus hemagglutinin sufficient for its dimerization. J. Virol.74, 6485–6493 (2000). ArticleCASPubMedPubMed Central Google Scholar
Peng, K.W. et al. Biodistribution of oncolytic measles virus after intraperitoneal administration into Ifnar-CD46Ge transgenic mice. Hum. Gene Ther.14, 1565–1577 (2003). ArticleCASPubMed Google Scholar