Rescue and propagation of fully retargeted oncolytic measles viruses (original) (raw)

References

  1. Peng, K.W. et al. Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood 98, 2002–2007 (2001).
    Article CAS PubMed Google Scholar
  2. Peng, K.-W. et al. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res. 62, 4656–4662 (2002).
    CAS PubMed Google Scholar
  3. Grote, D. et al. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 97, 3746–3754 (2001).
    Article CAS PubMed Google Scholar
  4. Phuong, L.K. et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res. 63, 2462–2469 (2003).
    CAS PubMed Google Scholar
  5. Dorig, R.E., Marcil, A., Chopra, A. & Richardson, C.D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 (1993).
    Article CAS PubMed Google Scholar
  6. Naniche, D. et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 67, 6025–6032 (1993).
    CAS PubMed PubMed Central Google Scholar
  7. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897 (2000).
    Article CAS PubMed Google Scholar
  8. Hahm, B. et al. Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human signaling lymphocytic activation molecule. J. Virol. 77, 3505–3515 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  9. Schneider-Schaulies, S., Bieback, K., Avota, E., Klagge, I. & ter Meulen, V. Regulation of gene expression in lymphocytes and antigen-presenting cells by measles virus: consequences for immunomodulation. J. Mol. Med. 80, 73–85 (2002).
    Article CAS PubMed Google Scholar
  10. McQuaid, S. & Cosby, S.L. An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab. Invest. 82, 403–409 (2002).
    Article CAS PubMed Google Scholar
  11. Nakamura, T. et al. Antibody-targeted cell fusion. Nat. Biotechnol. 22, 331–336 (2004).
    Article CAS PubMed Google Scholar
  12. Kaufmann, M. et al. Crystal structure of the anti-His tag antibody 3D5 single-chain fragment complexed to its antigen. J. Mol. Biol. 318, 135–147 (2002).
    Article CAS PubMed Google Scholar
  13. Masse, N., Barrett, T., Muller, C.P., Wild, T.F. & Buckland, R. Identification of a second major site for CD46 binding in the hemagglutinin protein from a laboratory strain of measles virus (MV): potential consequences for wild-type MV infection. J. Virol. 76, 13034–13038 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  14. Hashimoto, K. et al. SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J. Virol. 76, 6743–6749 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  15. Andres, O., Obojes, K., Kim, K.S., ter Meulen, V. & Schneider-Schaulies, J. CD46- and CD150-independent endothelial cell infection with wild-type measles viruses. J. Gen. Virol. 84, 1189–1197 (2003).
    Article CAS PubMed Google Scholar
  16. Mehta, K., Shahid, U. & Malavasi, F. Human CD38, a cell-surface protein with multiple functions. FASEB J. 10, 1408–1417 (1996).
    Article CAS PubMed Google Scholar
  17. Carpenter, G. Receptor tyrosine kinase substrates: src homology domains and signal transduction. FASEB J. 6, 3283–3289 (1992).
    Article CAS PubMed Google Scholar
  18. Kuan, C.T., Wikstrand, C.J. & Bigner, D.D. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr. Relat. Cancer 8, 83–96 (2001).
    Article CAS PubMed Google Scholar
  19. Schneider, U., Bullough, F., Vongpunsawad, S., Russell, S.J. & Cattaneo, R. Recombinant measles viruses efficiently entering cells through targeted receptors. J. Virol. 74, 9928–9936 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  20. Hammond, A.L. et al. Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen. J. Virol. 75, 2087–2096 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  21. Bucheit, A.D. et al. An oncolytic measles virus engineered to enter cells through the CD20 antigen. Mol. Ther. 7, 62–72 (2003).
    Article CAS PubMed Google Scholar
  22. Peng, K.-W., Holler, P., Orr, B., Kranz, D. & Russell, S.J. Targeting membrane fusion to specific peptide/MHC complexes through a high-affinity T-cell receptor. Gene Ther. 11, 1234–1239 (2004).
    Article CAS PubMed Google Scholar
  23. Wickham, T.J. Ligand-directed targeting of genes to the site of disease. Nat. Med. 9, 135–139 (2003).
    Article CAS PubMed Google Scholar
  24. Kasahara, N., Dozy, A.M. & Kan, Y.W. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266, 1373–1376 (1994).
    Article CAS PubMed Google Scholar
  25. Laquerre, S., Anderson, D.B., Stolz, D.B. & Glorioso, J.C. Recombinant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells. J. Virol. 72, 9683–9697 (1998).
    CAS PubMed PubMed Central Google Scholar
  26. Kanerva, A. et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol. Ther. 8, 449–458 (2003).
    Article CAS PubMed Google Scholar
  27. Schmitz, H., Wigand, R. & Heinrich, W. Worldwide epidemiology of human adenovirus infections. Am. J. Epidemiol. 117, 455–466 (1983).
    Article CAS PubMed Google Scholar
  28. Pollara, G., Katz, D.R. & Chain, B.M. The host response to herpes simplex virus infection. Curr. Opin. Infect. Dis. 17, 199–203 (2004).
    Article CAS PubMed Google Scholar
  29. Virgin, H.W., Dermody, T.S. & Tyler, K.L. Cellular and humoral immunity to reovirus infection. Curr. Top. Microbiol. Immunol. 233, 147–161 (1998).
    CAS PubMed Google Scholar
  30. Harrop, R., Ryan, M.G., Golding, H., Redchenko, I. & Carroll, M.W. Monitoring of human immunological responses to vaccinia virus. Methods Mol. Biol. 269, 243–266 (2004).
    CAS PubMed Google Scholar
  31. Douglas, J.T. et al. A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat. Biotechnol. 17, 470–475 (1999).
    Article CAS PubMed Google Scholar
  32. Lorimer, I.A. & Lavictoire, S.J. Targeting retrovirus to cancer cells expressing a mutant EGF receptor by insertion of a single chain antibody variable domain in the envelope glycoprotein receptor binding lobe. J. Immunol. Methods 237, 147–157 (2000).
    Article CAS PubMed Google Scholar
  33. Duprex, W., McQuaid, S., Hangartner, S., Billeter, M. & Rima, B. Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J. Virol. 73, 9568–9575 (1999).
    CAS PubMed PubMed Central Google Scholar
  34. Radecke, F. et al. Rescue of measles viruses from cloned DNA. EMBO J. 14, 5773–5784 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  35. Plemper, R.K., Hammond, A.L. & Cattaneo, R. Characterization of a region of the measles virus hemagglutinin sufficient for its dimerization. J. Virol. 74, 6485–6493 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  36. Peng, K.W. et al. Biodistribution of oncolytic measles virus after intraperitoneal administration into Ifnar-CD46Ge transgenic mice. Hum. Gene Ther. 14, 1565–1577 (2003).
    Article CAS PubMed Google Scholar

Download references