Alteration of Cre recombinase site specificity by substrate-linked protein evolution (original) (raw)

References

  1. Plückthun, A., Schaffitzel, C., Hanes, J. & Jermutus, L. In vitro selection and evolution of proteins. Adv. Protein Chem. 55, 367–403 (2000).
    Article Google Scholar
  2. Arnold, F.H. & Volkov, A.A. Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3, 54–59 (1999).
    Article CAS Google Scholar
  3. Wilson, D.S. & Szostak, J.W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).
    Article CAS Google Scholar
  4. Beaudry, A.A. & Joyce, G.F. Directed evolution of an RNA enzyme. Science 257, 635–641 (1992).
    Article CAS Google Scholar
  5. Roberts, R.W. Totally in vitro protein selection using mRNA–protein fusions and ribosome display. Curr. Opin. Chem. Biol. 3, 268–273 (1999).
    Article CAS Google Scholar
  6. Jermutus, L., Ryabova, L.A. & Plückthun, A. Recent advances in producing and selecting functional proteins by using cell-free translation. Curr. Opin. Biotechnol. 9, 534–548 (1998).
    Article CAS Google Scholar
  7. Tawfik, D.S. & Griffiths, A.D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16, 652–656 (1998).
    Article CAS Google Scholar
  8. Buchholz, F., Angrand, P.O. & Stewart, A.F. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 16, 657–662 (1998).
    Article CAS Google Scholar
  9. Hoess, R., Abremski, K., Irwin, S., Kendall, M. & Mack, A. DNA specificity of the Cre recombinase resides in the 25 kDa carboxyl domain of the protein. J. Mol. Biol. 216, 873–882 (1990).
    Article CAS Google Scholar
  10. Guo, F., Gopaul, D.N. & van Duyne, G.D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389, 40–46 (1997).
    Article CAS Google Scholar
  11. Hoess, R.H. & Abremski, K. Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system. J. Mol. Biol. 181, 351–362 (1985).
    Article CAS Google Scholar
  12. Hoess, R.H., Wierzbicki, A. & Abremski, K. The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res. 14, 2287–2300 (1986).
    Article CAS Google Scholar
  13. Rodriguez, C.I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).
    Article CAS Google Scholar
  14. Farley, F.W., Soriano, P., Steffen, L.S. & Dymecki, S.M. Widespread recombinase expression using FLPeR (Flipper) mice. Genesis 28, 106–110 (2000).
    Article CAS Google Scholar
  15. Drake, J.W. & Holland, J.J. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 96, 13910–13913 (1999).
    Article CAS Google Scholar
  16. Dorgai, L., Yagil, E. & Weisberg, R.A. Identifying determinants of recombination specificity: construction and characterization of mutant bacteriophage integrases. J. Mol. Biol. 252, 178–188 (1995).
    Article CAS Google Scholar
  17. Yagil, E., Dorgai, L. & Weisberg, R.A. Identifying determinants of recombination specificity: construction and characterization of chimeric bacteriophage integrases. J. Mol. Biol. 252, 163–177 (1995).
    Article CAS Google Scholar
  18. Hennighausen, L. & Furth, P.A. The right time and place for molecular scissors. Nat. Biotechnol. 17, 1062–1063 (1999).
    Article CAS Google Scholar
  19. Metzger, D. & Feil, R. Engineering the mouse genome by site-specific recombination. Curr. Opin. Biotechnol. 10, 470–476 (1999).
    Article CAS Google Scholar
  20. Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109 (2000).
    Article CAS Google Scholar
  21. Seibler, J., Schübeler, D., Fiering, S., Groudine, M. & Bode, J. DNA cassette exchange in ES cells mediated by Flp recombinase: an efficient strategy for repeated modification of tagged loci by marker-free constructs. Biochemistry 37, 6229–6234 (1998).
    Article CAS Google Scholar
  22. Soukharev, S., Miller, J.L. & Sauer, B. Segmental genomic replacement in embryonic stem cells by double lox targeting. Nucleic Acids Res. 27, e21 (1999).
    Article CAS Google Scholar
  23. Lee, G. & Saito, I. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216, 55–65 (1998).
    Article CAS Google Scholar
  24. Feng, Y.Q. et al. Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J. Mol. Biol. 292, 779–785 (1999).
    Article CAS Google Scholar
  25. Lauth, M., Moerl, K., Barski, J.J. & Meyer, M. Characterization of Cre-mediated cassette exchange after plasmid microinjection in fertilized mouse oocytes. Genesis 27, 153–158 (2000).
    Article CAS Google Scholar
  26. Thyagarajan, B., Guimarães, M.J., Groth, A.C. & Calos, M.P. Mammalian genomes contain active recombinase recognition sites. Gene 244, 47–54 (2000).
    Article CAS Google Scholar
  27. Thyagarajan, B., Olivares, E.C., Hollis, R.P., Ginsburg, D.S. & Calos, M.P. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol. Cell. Biol. 21, 3926–3934 (2001).
    Article CAS Google Scholar
  28. Guo, H. et al. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289, 452–457 (2000).
    Article CAS Google Scholar
  29. Satoh, W., Hirai, Y., Tamayose, K. & Shimada, T. Site-specific integration of an adeno-associated virus vector plasmid mediated by regulated expression of rep based on Cre-loxP recombination. J. Virol. 74, 10631–10638 (2000).
    Article CAS Google Scholar
  30. Logie, C. & Stewart, A.F. Ligand-regulated site-specific recombination. Proc. Natl. Acad. Sci. USA 92, 5940–5944 (1995).
    Article CAS Google Scholar
  31. Goff, S.P. Genetics of retroviral integration. Annu. Rev. Genet. 26, 527–544 (1992).
    Article CAS Google Scholar
  32. Russ, A.P., Friedel, C., Grez, M. & von Melchner, H. Self-deleting retrovirus vectors for gene therapy. J. Virol. 70, 4927–4932 (1996).
    CAS PubMed PubMed Central Google Scholar
  33. Choulika, A., Guyot, V. & Nicolas, J.F. Transfer of single gene-containing long terminal repeats into the genome of mammalian cells by a retroviral vector carrying the cre gene and the loxP site. J. Virol. 70, 1792–1798 (1996).
    CAS PubMed PubMed Central Google Scholar
  34. Salmon, P. et al. Reversible immortalization of human primary cells by lentivector-mediated transfer of specific genes. Mol. Ther. 2, 404–414 (2000).
    Article CAS Google Scholar
  35. Habu, Y. et al. Development of an HIV-1-dependent expression vector with the Cre/loxP system. Nucleic Acids Symp. Ser. 42, 295–296 (1999).
    Article CAS Google Scholar
  36. Flowers, C.C., Woffendin, C., Petryniak, J., Yang, S. & Nabel, G.J. Inhibition of recombinant human immunodeficiency virus type 1 replication by a site-specific recombinase. J. Virol. 71, 2685–2692 (1997).
    CAS PubMed PubMed Central Google Scholar
  37. Lee, Y. & Park, J. A novel mutant loxP containing part of long terminal repeat of HIV-1 in spacer region: presentation of possible target site for antiviral strategy using site-specific recombinase. Biochem. Biophys. Res. Commun. 253, 588–593 (1998).
    Article CAS Google Scholar
  38. Kim, S.T., Kim, G.W., Lee, Y.S. & Park, J.S. Characterization of Cre-loxP interaction in the major groove: hint for structural distortion of mutant Cre and possible strategy for HIV-1 therapy. J. Cell Biochem. 80, 321–327 (2001).
    Article CAS Google Scholar
  39. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).
    Article CAS Google Scholar
  40. Stemmer, W.P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).
    Article CAS Google Scholar
  41. Zhao, H., Giver, L., Shao, Z., Affholter, J.A. & Arnold, F.H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261 (1998).
    Article CAS Google Scholar
  42. Buchholz, F., Ringrose, L., Angrand, P.O., Rossi, F. & Stewart, A.F. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res. 24, 4256–4262 (1996).
    Article CAS Google Scholar
  43. Zhang, Y. et al. Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24, 543–548 (1996).
    Article CAS Google Scholar
  44. Gopaul, D.N., Guo, F. & Van Duyne, G.D. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J. 17, 4175–4187 (1998).
    Article CAS Google Scholar
  45. Guo, F., Gopaul, D.N. & Van Duyne, G.D. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc. Natl. Acad. Sci. USA 96, 7143–7148 (1999).
    Article CAS Google Scholar
  46. Kellendonk, C. et al. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24, 1404–1411 (1996).
    Article CAS Google Scholar

Download references