Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery (original) (raw)
Capecchi, M.R. Generating mice with targeted mutations. Nat. Med.7, 1086–1090 (2001). ArticleCAS Google Scholar
Chen, J.M., Cooper, D.N., Chuzhanova, N., Ferec, C. & Patrinos, G.P. Gene conversion: mechanisms, evolution and human disease. Nat. Rev. Genet.8, 762–775 (2007). ArticleCAS Google Scholar
Hatada, S., Nikkuni, K., Bentley, S.A., Kirby, S. & Smithies, O. Gene correction in hematopoietic progenitor cells by homologous recombination. Proc. Natl. Acad. Sci. USA97, 13807–13811 (2000). ArticleCAS Google Scholar
Zwaka, T.P. & Thomson, J.A. Homologous recombination in human embryonic stem cells. Nat. Biotechnol.21, 319–321 (2003). ArticleCAS Google Scholar
Smithies, O. Forty years with homologous recombination. Nat. Med.7, 1083–1086 (2001). ArticleCAS Google Scholar
Hendrie, P.C. & Russell, D.W. Gene targeting with viral vectors. Mol. Ther.12, 9–17 (2005). ArticleCAS Google Scholar
Baum, C. et al. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol. Ther.9, 5–13 (2004). ArticleCAS Google Scholar
Bushman, F. et al. Genome-wide analysis of retroviral DNA integration. Nat. Rev. Microbiol.3, 848–858 (2005). ArticleCAS Google Scholar
Montini, E. et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat. Biotechnol.24, 687–696 (2006). ArticleCAS Google Scholar
Nienhuis, A.W., Dunbar, C.E. & Sorrentino, B.P. Genotoxicity of retroviral integration in hematopoietic cells. Mol. Ther.13, 1031–1049 (2006). ArticleCAS Google Scholar
Aiuti, A. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science296, 2410–2413 (2002). ArticleCAS Google Scholar
Gaspar, H.B. et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet364, 2181–2187 (2004). ArticleCAS Google Scholar
Cavazzana-Calvo, M., Lagresle, C., Hacein-Bey-Abina, S. & Fischer, A. Gene therapy for severe combined immunodeficiency. Annu. Rev. Med.56, 585–602 (2005). ArticleCAS Google Scholar
Ott, M.G. et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1–EVI1, PRDM16 or SETBP1. Nat. Med.12, 401–409 (2006). ArticleCAS Google Scholar
Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science302, 415–419 (2003). ArticleCAS Google Scholar
Woods, N.B., Bottero, V., Schmidt, M., von Kalle, C. & Verma, I.M. Gene therapy: therapeutic gene causing lymphoma. Nature440, 1123 (2006). ArticleCAS Google Scholar
Thrasher, A.J. et al. Gene therapy: X-SCID transgene leukaemogenicity. Nature443, E5; discussion E6–7 (2006). ArticleCAS Google Scholar
Goyenvalle, A. et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science306, 1796–1799 (2004). ArticleCAS Google Scholar
Tahara, M. et al. Trans-splicing repair of CD40 ligand deficiency results in naturally regulated correction of a mouse model of hyper-IgM X-linked immunodeficiency. Nat. Med.10, 835–841 (2004). ArticleCAS Google Scholar
Chamberlain, J.R. et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science303, 1198–1201 (2004). ArticleCAS Google Scholar
Miller, D.G. et al. Gene targeting in vivo by adeno-associated virus vectors. Nat. Biotechnol.24, 1022–1026 (2006). ArticleCAS Google Scholar
Calos, M.P. The phiC31 integrase system for gene therapy. Curr. Gene Ther.6, 633–645 (2006). ArticleCAS Google Scholar
Porteus, M.H. & Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol.23, 967–973 (2005). ArticleCAS Google Scholar
Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science300, 763 (2003). Article Google Scholar
Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol.21, 289–297 (2001). ArticleCAS Google Scholar
Miller, J., McLachlan, A.D. & Klug, A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J.4, 1609–1614 (1985). ArticleCAS Google Scholar
Pabo, C.O., Peisach, E. & Grant, R.A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem.70, 313–340 (2001). ArticleCAS Google Scholar
Tan, S. et al. Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc. Natl. Acad. Sci. USA100, 11997–12002 (2003). ArticleCAS Google Scholar
Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA93, 1156–1160 (1996). ArticleCAS Google Scholar
Bitinaite, J., Wah, D.A., Aggarwal, A.K. & Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA95, 10570–10575 (1998). ArticleCAS Google Scholar
O'Driscoll, M. & Jeggo, P.A. The role of double-strand break repair - insights from human genetics. Nat. Rev. Genet.7, 45–54 (2006). ArticleCAS Google Scholar
Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature435, 646–651 (2005). ArticleCAS Google Scholar
Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science272, 263–267 (1996). ArticleCAS Google Scholar
Vargas, J. Jr., Gusella, G.L., Najfeld, V., Klotman, M.E. & Cara, A. Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum. Gene Ther.15, 361–372 (2004). ArticleCAS Google Scholar
Nightingale, S.J. et al. Transient gene expression by nonintegrating lentiviral vectors. Mol. Ther.13, 1121–1132 (2006). ArticleCAS Google Scholar
Yanez-Munoz, R.J. et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat. Med.12, 348–353 (2006). ArticleCAS Google Scholar
Philippe, S. et al. Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc. Natl. Acad. Sci. USA103, 17684–17689 (2006). ArticleCAS Google Scholar
Leavitt, A.D., Robles, G., Alesandro, N. & Varmus, H.E. Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J. Virol.70, 721–728 (1996). CASPubMedPubMed Central Google Scholar
Elliott, B., Richardson, C., Winderbaum, J., Nickoloff, J.A. & Jasin, M. Gene conversion tracts from double-strand break repair in mammalian cells. Mol. Cell. Biol.18, 93–101 (1998). ArticleCAS Google Scholar
Buckley, R.H. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu. Rev. Immunol.22, 625–655 (2004). ArticleCAS Google Scholar
Lim, J.K., Glass, W.G., McDermott, D.H. & Murphy, P.M. CCR5: no longer a “good for nothing” gene–chemokine control of West Nile virus infection. Trends Immunol.27, 308–312 (2006). ArticleCAS Google Scholar
Cowan, C.A. et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med.350, 1353–1356 (2004). ArticleCAS Google Scholar
Tan, W., Dong, Z., Wilkinson, T.A., Barbas, C.F. III & Chow, S.A. Human immunodeficiency virus type 1 incorporated with fusion proteins consisting of integrase and the designed polydactyl zinc finger protein E2C can bias integration of viral DNA into a predetermined chromosomal region in human cells. J. Virol.80, 1939–1948 (2006). ArticleCAS Google Scholar
Bushman, F.D. & Miller, M.D. Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J. Virol.71, 458–464 (1997). CASPubMedPubMed Central Google Scholar
Ciuffi, A., Diamond, T.L., Hwang, Y., Marshall, H.M. & Bushman, F.D. Modulating target site selection during human immunodeficiency virus DNA integration in vitro with an engineered tethering factor. Hum. Gene Ther.17, 960–967 (2006). ArticleCAS Google Scholar
Fletcher, T.M. III et al. Complementation of integrase function in HIV-1 virions. EMBO J.16, 5123–5138 (1997). ArticleCAS Google Scholar
Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol.7, 739–750 (2006). ArticleCAS Google Scholar
Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447, 799–816 (2007). ArticleCAS Google Scholar
Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol.25, 778–785 (2007). ArticleCAS Google Scholar
Santoni de Sio, F.R., Cascio, P., Zingale, A., Gasparini, M. & Naldini, L. Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction. Blood107, 4257–4265 (2006). ArticleCAS Google Scholar
Follenzi, A. & Naldini, L. Generation of HIV-1 derived lentiviral vectors. Methods Enzymol.346, 454–465 (2002). ArticleCAS Google Scholar
Brown, B.D., Venneri, M.A., Zingale, A., Sergi Sergi, L. & Naldini, L. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat. Med.12, 585–591 (2006). ArticleCAS Google Scholar