Approaches for the sequence-specific knockdown of mRNA (original) (raw)
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in C. elegans. Nature391, 806–811 (1998). ArticleCASPubMed Google Scholar
Elbashir, S.M. et al. Duplexes of 21-nucleotide RNA s mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001). CASPubMed Google Scholar
Caplen, N.J., Parrish, S., Imani, F., Fire, A. & Morgan, R.A. Specific inhibition of gene expression by small double-stranded RNA s in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA98, 9742–9747 (2001). CASPubMedPubMed Central Google Scholar
Stephenson, M.L. & Zamecnik, P.C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA75, 285–288 (1978). CASPubMedPubMed Central Google Scholar
Zamecnik, P.C. & Stephenson, M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA75, 280–284 (1978). CASPubMedPubMed Central Google Scholar
Crooke, S.T. Molecular mechanisms of action of antisense drugs. Biochem. Biophys. Acta.1489, 31–44 (1999). CASPubMed Google Scholar
Branch, A.D. A hitchhiker's guide to antisense and nonantisense biochemical pathways. Hepatology24, 1517–1529 (1996). CASPubMed Google Scholar
Dias, N. & Stein, C.A. Antisense oligonucleotides: basic concepts and mechanisms. Mol. Cancer Ther.1, 347–355 (2002). CASPubMed Google Scholar
Stein, C.A. & Cohen, J.S. Oligodeoxynucleotides as inhibitors of gene expression: a review. Cancer Res.48, 2659–2668 (1988). CASPubMed Google Scholar
Zon, G. Innovations in the use of antisense oligonucleotides. Ann. NY Acad. Sci.616, 161–172 (1990). CASPubMed Google Scholar
Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell31, 147–157 (1982). CASPubMed Google Scholar
Bevilacqua, P.C. & Turner, D.H. Comparison of binding of mixed ribose-deoxyribose analogues of CUCU to a ribozyme and to GGAGAA by equilibrium dialysis: evidence for ribozyme specific interactions with 2' OH groups. Biochemistry30, 10632–10640 (1991). CASPubMed Google Scholar
Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell35, 849–857 (1983). CASPubMed Google Scholar
Costa, M. & Michel, F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J.14, 1276–1285 (1995). CASPubMedPubMed Central Google Scholar
Hutchins, C.J., Rathjen, P.D., Forster, A.C. & Symons, R.H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res.14, 3627–3640 (1986). CASPubMedPubMed Central Google Scholar
Buzayan, J.M., McNinch, J.S., Schneider, I.R. & Bruening, G. A nucleotide sequence rearrangement distinguishes two isolates of satellite tobacco ringspot virus RNA. Virology160, 95–99 (1987). CASPubMed Google Scholar
Buzayan, J.M., Hampel, A. & Bruening, G. Nucleotide sequence and newly formed phosphodiester bond of spontaneously ligated satellite tobacco ringspot virus RNA. Nucleic Acids Res.14, 9729–9743 (1986). CASPubMedPubMed Central Google Scholar
Kumar, P.K. et al. Random mutations to evaluate the role of bases at two important single- stranded regions of genomic HDV ribozyme. Nucleic Acids Res.20, 3919–3924 (1992). CASPubMedPubMed Central Google Scholar
Saville, B.J. & Collins, R.A. A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell61, 685–696 (1990). CASPubMed Google Scholar
Wilson, D.S. & Szostak, J.W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem.68, 611–647 (1999). CASPubMed Google Scholar
Szostak, J.W. Enzymatic activity of the conserved core of a group I self-splicing intron. Nature322, 83–86 (1986). CASPubMed Google Scholar
Jones, J.T., Lee, S.W. & Sullenger, B.A. _Trans_-splicing reactions by ribozymes. Methods Mol. Biol.74, 341–348 (1997). CASPubMed Google Scholar
Sullenger, B.A. & Cech, T.R. Ribozyme-mediated repair of defective mRNA by targeted, _trans_-splicing. Nature371, 619–622 (1994). CASPubMed Google Scholar
Lan, N. et al. Enhancing RNA repair efficiency by combining trans-splicing ribozymes that recognize different accessible sites on a target RNA. Mol. Ther.2, 245–255 (2000). CASPubMed Google Scholar
Lan, N., Howrey, R.P., Lee, S.W., Smith, C.A. & Sullenger, B.A. Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science280, 1593–1596 (1998). CASPubMed Google Scholar
Watanabe, T. & Sullenger, B.A. Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc. Natl. Acad. Sci. USA97, 8490–8494 (2000). CASPubMedPubMed Central Google Scholar
Phylactou, L.A., Darrah, C. & Wood, M.J. Ribozyme-mediated _trans_-splicing of a trinucleotide repeat. Nat. Genet.18, 378–381 (1998). CASPubMed Google Scholar
Kurz, J.C. & Fierke, C.A. Ribonuclease P: a ribonucleoprotein enzyme. Curr. Opin. Chem. Biol.4, 553–558 (2000). CASPubMed Google Scholar
Forster, A.C. & Altman, S. External guide sequences for an RNA enzyme. Science249, 783–786 (1990). CASPubMed Google Scholar
Ikawa, Y., Shiraishi, H. & Inoue, T. _Trans_-activation of the Tetrahymena ribozyme by its P2-2.1 domains. J. Biochem. (Tokyo)123, 528–533 (1998). CAS Google Scholar
Duhamel, J. et al. Secondary structure content of the HDV ribozyme in 95% formamide. Nucleic Acids Res.24, 3911–3917 (1996). CASPubMedPubMed Central Google Scholar
Trang, P., Kilani, A., Kim, J. & Liu, F. A ribozyme derived from the catalytic subunit of RNase P from Escherichia coli is highly effective in inhibiting replication of herpes simplex virus 1. J. Mol. Biol.301, 817–826 (2000). CASPubMed Google Scholar
Kilani, A.F. et al. RNase P ribozymes selected in vitro to cleave a viral mRNA effectively inhibit its expression in cell culture. J. Biol. Chem.275, 10611–10622 (2000). CASPubMed Google Scholar
Dunn, W., Trang, P., Khan, U., Zhu, J. & Liu, F. RNase P-mediated inhibition of cytomegalovirus protease expression and viral DNA encapsidation by oligonucleotide external guide sequences. Proc. Natl. Acad. Sci. USA98, 14831–14836 (2001). CASPubMedPubMed Central Google Scholar
Trang, P. et al. Engineered RNase P ribozymes inhibit gene expression and growth of cytomegalovirus by increasing rate of cleavage and substrate binding. J. Mol. Biol.315, 573–586 (2002). CASPubMed Google Scholar
Trang, P. et al. Effective inhibition of human cytomegalovirus gene expression and replication by a ribozyme derived from the catalytic RNA subunit of RNase P from Escherichia coli. Proc. Natl. Acad. Sci. USA97, 5812–5817 (2000). CASPubMedPubMed Central Google Scholar
Forster, A.C., Jeffries, A.C., Sheldon, C.C. & Symons, R.H. Structural and ionic requirements for self-cleavage of virusoid RNAs and trans self-cleavage of viroid RNA. Cold Spring Harb. Symp. Quant. Biol.52, 249–259 (1987). CASPubMed Google Scholar
Haseloff, J. & Gerlach, W.L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Biotechnology24, 264–269 (1992). CASPubMed Google Scholar
Hampel, A., Tritz, R., Hicks, M. & Cruz, P. 'Hairpin' catalytic RNA model: evidence for helices and sequence requirement for substrate RNA. Nucleic Acids Res.18, 299–304 (1990). CASPubMedPubMed Central Google Scholar
Haseloff, J. & Gerlach, W.L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature334, 585–591 (1988). CASPubMed Google Scholar
Sarver, N. et al. Ribozymes as potential anti-HIV-1 therapeutic agents. Science247, 1222–1225 (1990). CASPubMed Google Scholar
Opalinska, J.B. & Gewirtz, A.M. Nucleic-acid therapeutics: basic principles and recent applications. Nat. Rev. Drug Discov.1, 503–514 (2002). CASPubMed Google Scholar
Sullenger, B.A. & Gilboa, E. Emerging clinical applications of RNA. Nature418, 252–258 (2002). CASPubMed Google Scholar
Rossi, J.J. The application of ribozymes to HIV infection. Curr. Opin. Mol. Ther.1, 316–322 (1999). CASPubMed Google Scholar
Rossi, J.J. Therapeutic applications of catalytic antisense RNAs (ribozymes). Ciba Found. Symp.209, 195–204 (1997). CASPubMed Google Scholar
Couture, L.A. & Stinchcomb, D.T. Anti-gene therapy: the use of ribozymes to inhibit gene function. Trends Genet.12, 510–515 (1996). CASPubMed Google Scholar
Santoro, S.W. & Joyce, G.F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA94, 4262–4266 (1997). CASPubMedPubMed Central Google Scholar
Santoro, S.W. & Joyce, G.F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry37, 13330–13342 (1998). CASPubMed Google Scholar
Khachigian, L.M. DNAzymes: cutting a path to a new class of therapeutics. Curr. Opin. Mol. Ther.4, 119–121 (2002). CASPubMed Google Scholar
Emilsson, G.M. & Breaker, R.R. Deoxyribozymes: new activities and new applications. Cell Mol. Life Sci.59, 596–607 (2002). CASPubMed Google Scholar
Cairns, M.J., Saravolac, E.G. & Sun, L.Q. Catalytic DNA: a novel tool for gene suppression. Curr. Drug Targets3, 269–279 (2002). CASPubMed Google Scholar
Zhang, L. et al. Angiogenic inhibition mediated by a DNAzyme that targets vascular endothelial growth factor receptor 2. Cancer Res.62, 5463–5469 (2002). CASPubMed Google Scholar
Wu, Y. et al. Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes). Hum. Gene Ther.10, 2847–2857 (1999). CASPubMed Google Scholar
Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 363–366 (2001). CASPubMed Google Scholar
Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). CASPubMed Google Scholar
Reinhart, B.J. & Bartel, D.P. Small RNAs correspond to centromere heterochromatic repeats. Science297, 1831 (2002). CASPubMed Google Scholar
Hall, I.M. et al. Establishment and maintenance of a heterochromatin domain. Science297, 2232–2237 (2002). CASPubMed Google Scholar
Schramke, V. & Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science301, 1069–1074 (2003). CASPubMed Google Scholar
Sledz, C.A., Holko, M., De Veer, M.J., Silverman, R.H. & Williams, B.R. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol.5, 834–839 (2003). CASPubMed Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). CASPubMed Google Scholar
Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003). CASPubMed Google Scholar
Zeng, Y. & Cullen, B.R. Sequence requirements for micro RNA processing and function in human cells. RNA9, 112–123 (2003). CASPubMedPubMed Central Google Scholar
Carrington, J.C. & Ambros, V. Role of microRNAs in plant and animal development. Science301, 336–338 (2003). CASPubMed Google Scholar
Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell9, 1327–1333 (2002). CASPubMed Google Scholar
Tuschl, T. Expanding small RNA interference. Nat. Biotechnol.20, 446–448 (2002). CASPubMed Google Scholar
Michienzi, A., Cagnon, L., Bahner, I. & Rossi, J.J. Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proc. Natl. Acad. Sci. USA97, 8955–8960 (2000). CASPubMedPubMed Central Google Scholar
Grunweller, A. et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-_O_-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res.31, 3185–3193 (2003). PubMedPubMed Central Google Scholar
Vickers, T.A. et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J. Biol. Chem.278, 7108–7118 (2003). CASPubMed Google Scholar
Holen, T., Amarzguioui, M., Wiiger, M.T., Babaie, E. & Prydz, H. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res.30, 1757–1766 (2002). CASPubMedPubMed Central Google Scholar
Bohula, E.A. et al. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J. Biol. Chem.278, 15991–15997 (2003). CASPubMed Google Scholar
Rossi, J.J. Ribozymes, genomics and therapeutics. Chem. Biol.6, R33–R37 (1999). CASPubMed Google Scholar
Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell115, 209–216 (2003). CASPubMed Google Scholar
Lee, N.S. et al. Functional colocalization of ribozymes and target mRNAs in Drosophila oocytes. FASEB J.15, 2390–2400 (2001). CASPubMed Google Scholar
Lee, N.S., Bertrand, E. & Rossi, J. mRNA localization signals can enhance the intracellular effectiveness of hammerhead ribozymes. RNA5, 1200–1209 (1999). CASPubMedPubMed Central Google Scholar
Castanotto, D., Scherr, M. & Rossi, J.J. Intracellular expression and function of antisense catalytic RNAs. Methods Enzymol.313, 401–420 (2000). CASPubMed Google Scholar
Sullenger, B.A. Colocalizing ribozymes with substrate RNAs to increase their efficacy as gene inhibitors. Appl. Biochem. Biotechnol.54, 57–61 (1995). CASPubMed Google Scholar
Kawasaki, H. & Taira, K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res.31, 700–707 (2003). CASPubMedPubMed Central Google Scholar
Giles, R.V. & Tidd, D.M. Increased specificity for antisense oligodeoxynucleotide targeting of RNA cleavage by RNase H using chimeric methylphosphonodiester/phosphodiester structures. Nucleic Acids Res.20, 763–770 (1992). CASPubMedPubMed Central Google Scholar
Millington-Ward, S. et al. A mutation-independent therapeutic strategem for osteogenesis imperfecta. Antisense Nucleic Acid Drug. Dev.9, 537–542 (1999). CASPubMed Google Scholar
Drenser, K.A., Timmers, A.M., Hauswirth, W.W. & Lewin, A.S. Ribozyme-targeted destruction of RNA associated with autosomal-dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci.39, 681–689 (1998). CASPubMed Google Scholar
Lewin, A.S. et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat. Med.4, 967–971 (1998). CASPubMed Google Scholar
Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol.21, 635–637 (2003). CASPubMed Google Scholar
Chi, J.T. et al. Genome-wide view of gene silencing by small interfering RNAs. Proc. Natl. Acad. Sci. USA100, 6343–6346 (2003). CASPubMedPubMed Central Google Scholar
Krieg, A.M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol.20, 709–760 (2002). CASPubMed Google Scholar
Mirmohammadsadegh, A., Maschke, J., Basner-Tschakarjan, E., Bar, A. & Hengge, U.R. Induction of acute phase response genes in keratinocytes following exposure to oligodeoxynucleotides. J. Mol. Med.80, 377–383 (2002). CASPubMed Google Scholar
Gewirtz, A.M. Oligonucleotide therapeutics: clothing the emperor. Curr. Opin. Mol. Ther.1, 297–306 (1999). CASPubMed Google Scholar
Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet.34, 263–264 (2003). CASPubMed Google Scholar
Matsukura, S., Jones, P.A. & Takai, D. Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res.31, e77 (2003). PubMedPubMed Central Google Scholar
Chen, Y., Stamatoyannopoulos, G. & Song, C.Z. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res.63, 4801–4804 (2003). CASPubMed Google Scholar
Fortes, P. et al. Inhibiting expression of specific genes in mammalian cells with 5′ end-mutated U1 small nuclear RNAs targeted to terminal exons of pre-mRNA. Proc. Natl. Acad. Sci. USA100, 8264–8269 (2003). CASPubMedPubMed Central Google Scholar
Bartel, D. Whither RNAi? Nat. Cell. Biol.5, 489–490 (2003). Google Scholar
Scott, W.G., Finch, J.T. & Klug, A. The crystal structure of an all-RNA hammerhead ribozyme. Nucleic Acids Symp. Ser.34, 214–216 (1995). CAS Google Scholar
Pley, H.W., Flaherty, K.M. & McKay, D.B. Three-dimensional structure of a hammerhead ribozyme. Nature372, 68–74 (1994). CASPubMed Google Scholar