EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration (original) (raw)
References
Gundersen, G.G. & Bulinski, J.C. Microtubule arrays in differentiated cells contain elevated levels of a post-translationally modified form of tubulin. Eur. J. Cell Biol.42, 288–294 (1986). CASPubMed Google Scholar
Gundersen, G.G. & Bulinski, J.C. Selective stabilization of microtubules oriented toward the direction of cell migration. Proc. Natl Acad. Sci. USA85, 5946–5950 (1988). ArticleCAS Google Scholar
Gundersen, G.G., Khawaja, S. & Bulinski, J.C. Generation of a stable, posttranslationally modified microtubule array is an early event in myogenic differentiation. J. Cell. Biol.109, 2275–2288 (1989). ArticleCAS Google Scholar
Cook, T.A., Nagasaki, T. & Gundersen, G.G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol.141, 175–185 (1998). ArticleCAS Google Scholar
Palazzo, A.F., Cook, T.A., Alberts, A.S. & Gundersen, G.G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol.3, 723–729 (2001). ArticleCAS Google Scholar
Palazzo, A.F., Eng, C.H., Schlaepfer, D.D., Marcantonio, E.E. & Gundersen, G.G. Localized stabilization of miicrotubules by integrin and FAK facilitated Rho signaling. Science303, 836–839 (2004). ArticleCAS Google Scholar
Webster, D.R., Gundersen, G.G., Bulinski, J.C. & Borisy, G.G. Differential turnover of tyrosinated and detyrosinated microtubules. Proc. Natl Acad. Sci. USA84, 9040–9044 (1987). ArticleCAS Google Scholar
Infante, A.S., Stein, M.S., Zhai, Y., Borisy, G.G. & Gundersen, G.G. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J. Cell Sci.113, 3907–3919 (2000). CASPubMed Google Scholar
Westermann, S. & Weber, K. Post-translational modifications regulate microtubule function. Nature Rev. Mol. Cell Biol.4, 938–947 (2003). ArticleCAS Google Scholar
Gundersen, G.G., Kalnoski, M.H. & Bulinski, J.C. Distinct populations of microtubules: tyrosinated and nontyrosinated α-tubulin are distributed differently in vivo. Cell38, 779–789 (1984). ArticleCAS Google Scholar
Liao, G. & Gundersen, G.G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem.273, 9797–9803 (1998). ArticleCAS Google Scholar
Lin, S.X., Gundersen, G.G. & Maxfield, F.R. Export from pericentriolar endocytic recycling compartment to cell surface depends on stable, detyrosinated (glu) microtubules and kinesin. Mol. Biol. Cell13, 96–109 (2002). ArticleCAS Google Scholar
Gurland, G. & Gundersen, G.G. Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J. Cell Biol.131, 1275–1290 (1995). ArticleCAS Google Scholar
Kreitzer, G., Liao, G. & Gundersen, G.G. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol. Biol. Cell10, 1105–1118 (1999). ArticleCAS Google Scholar
Schuyler, S.C. & Pellman, D. Microtubule “plus-end-tracking proteins”: The end is just the beginning. Cell105, 421–424 (2001). ArticleCAS Google Scholar
Kohno, H., Tanaka, K., Mino, A., Umikawa, M. & Takai, Y. Bni1 implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in S. cerevisiae. EMBO J.15, 6060–6068 (1996). ArticleCAS Google Scholar
Lee, L., Klee, S.K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae Formin Bni1p. J. Cell Biol.144, 947–961 (1999). ArticleCAS Google Scholar
Adames, N.R. & Cooper, J.A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol.149, 863–874 (2000). ArticleCAS Google Scholar
Bloom, K. It's a kar9ochore to capture microtubules. Nature Cell Biol.2, E96–E98 (2000). ArticleCAS Google Scholar
Schuyler, S.C. & Pellman, D. Search, capture and signal: games microtubules and centrosomes play. J. Cell Sci.114, 247–255 (2001). CASPubMed Google Scholar
Kusch, J., Liakopoulos, D. & Barral, Y. Spindle asymmetry: a compass for the cell. Trends Cell Biol.13, 562–569 (2003). ArticleCAS Google Scholar
Yin, H., Pruyne, D., Huffaker, T.C. & Bretscher, A. Myosin V orientates the mitotic spindle in yeast. Nature406, 1013–1015 (2000). ArticleCAS Google Scholar
Beach, D.L., Thibodeaux, J., Maddox, P., Yeh, E. & Bloom, K. The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr. Biol.10, 1497–1506 (2000). ArticleCAS Google Scholar
Su, L.K. et al. APC binds to the novel protein EB1. Cancer Res.55, 2971–2977 (1995). Google Scholar
Bienz, M. Spindles cotton on to junctions, APC and EB1. Nature Cell Biol.3, E67–E68 (2001). ArticleCAS Google Scholar
Munemitsu, S. et al. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res.54, 3676–3681 (1994). CASPubMed Google Scholar
Berrueta, L. et al. The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc. Natl Acad. Sci. USA95, 10596–10601 (1998). ArticleCAS Google Scholar
Zumbrunn, J., Kinoshita, K., Hyman, A.A. & Nathke, I.S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Curr. Biol.11, 44–49 (2001). ArticleCAS Google Scholar
Askham, J.M., Vaughan, K.T., Goodson, H.V. & Morrison, E.E. Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell13, 3627–3645 (2002). ArticleCAS Google Scholar
Ligon, L.A., Shelly, S.S., Tokito, M. & Holzbaur, E.L. The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Mol. Biol. Cell14, 1405–1417 (2003). ArticleCAS Google Scholar
Gundersen, G.G. Evolutionary conservation of microtubule-capture mechanisms. Nature Rev. Mol. Cell Biol.3, 296–304 (2002). ArticleCAS Google Scholar
Berrueta, L., Tirnauer, J.S., Schuyler, S.C., Pellman, D. & Bierer, B.E. The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr. Biol.9, 425–428 (1999). ArticleCAS Google Scholar
Tirnauer, J.S., O'Toole, E., Berrueta, L., Bierer, B.E. & Pellman, D. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol.145, 993–1007 (1999). ArticleCAS Google Scholar
Rogers, S.L., Rogers, G.C., Sharp, D.J. & Vale, R.D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol.158, 873–884 (2002). ArticleCAS Google Scholar
Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol.10, 865–868 (2000). ArticleCAS Google Scholar
Alberts, A.S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem.276, 2824–2830 (2001). ArticleCAS Google Scholar
Palazzo, A.F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol.11, 1536–1541 (2001). ArticleCAS Google Scholar
Askham, J.M., Moncur, P., Markham, A.F. & Morrison, E.E. Regulation and function of the interaction between the APC tumour suppressor protein and EB1. Oncogene19, 1950–1958 (2000). ArticleCAS Google Scholar
Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell109, 873–885 (2002). ArticleCAS Google Scholar
Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol.1, 136–143 (1999). ArticleCAS Google Scholar
Wallar, B.J. & Alberts, A.S. The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol.13, 435–446 (2003). ArticleCAS Google Scholar
Yasuda, S. et al. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature428, 767–771 (2004). ArticleCAS Google Scholar
Nakamura, M., Zhou, X.Z., Kishi, S. & Lu, K.P. Involvement of the telomeric protein Pin2/TRF1 in the regulation of the mitotic spindle. FEBS Lett.514, 193–198 (2002). ArticleCAS Google Scholar
Subramanian, A. et al. Shortstop recruits EB1/APC1 and promotes microtubule assembly at the muscle-tendon junction. Curr. Biol.13, 1086–1095 (2003). ArticleCAS Google Scholar
Leung, C.L., Sun, D., Zheng, M., Knowles, D.R. & Liem, R.K. Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J. Cell Biol.147, 1275–1286 (1999). ArticleCAS Google Scholar
Karakesisoglou, I., Yang, Y. & Fuchs, E. An epidermal plakin that integrates actin and microtubule networks at cellular junctions. J. Cell Biol.149, 195–208 (2000). ArticleCAS Google Scholar
Sun, D., Leung, C.L. & Liem, R.K. Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins. J. Cell Sci.114, 161–172 (2001). CASPubMed Google Scholar
Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. & Fuchs, E. ACF7. An essential integrator of microtubule dynamics. Cell115, 343–354 (2003). ArticleCAS Google Scholar
Evangelista, M., Zigmond, S. & Boone, C. Formins: signaling effectors for assembly and polarization of actin filaments. J. Cell Sci.116, 2903–2911 (2003). Article Google Scholar
Elbashir, S.M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods26, 199–213 (2002). ArticleCAS Google Scholar