Mapping the dynamic organization of the nuclear pore complex inside single living cells (original) (raw)
References
Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature402, C47–C52 (1999). ArticleCASPubMed Google Scholar
Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol.158, 915–927 (2002). ArticleCASPubMedPubMed Central Google Scholar
Suntharalingam, M. & Wente, S. R. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell4, 775–789 (2003). ArticleCASPubMed Google Scholar
Daigle, N. et al. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol.154, 71–84 (2001). ArticleCASPubMedPubMed Central Google Scholar
Enninga, J., Levay, A. & Fontoura, B. M. Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. Mol. Cell. Biol.23, 7271–7284 (2003). ArticleCASPubMedPubMed Central Google Scholar
Belgareh, N. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol.154, 1147–1160 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nakielny, S., Shaikh, S., Burke, B. & Dreyfuss, G. Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain. EMBO J.18, 1982–1995 (1999). ArticleCASPubMedPubMed Central Google Scholar
Griffis, E. R., Altan, N., Lippincott-Schwartz, J. & Powers, M. A. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol. Biol. Cell13, 1282–1297 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zolotukhin, A. S. & Felber, B. K. Nucleoporins nup98 and nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J. Virol.73, 120–127 (1999). CASPubMedPubMed Central Google Scholar
Dilworth, D. J. et al. Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. J. Cell Biol.153, 1465–1478 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lindsay, M. E., Plafker, K., Smith, A. E., Clurman, B. E. & Macara, I. G. Npap60/Nup50 is a tri-stable switch that stimulates importin-alpha:beta-mediated nuclear protein import. Cell110, 349–360 (2002). ArticleCASPubMed Google Scholar
Denning, D. et al. The nucleoporin Nup60p functions as a Gsp1p–GTP-sensitive tether for Nup2p at the nuclear pore complex. J. Cell Biol.154, 937–950 (2001). ArticleCASPubMedPubMed Central Google Scholar
Guan, T. et al. Nup50, a nucleoplasmically oriented nucleoporin with a role in nuclear protein export. Mol. Cell. Biol.20, 5619–5630 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bodoor, K. et al. Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J. Cell Sci.112, 2253–2264 (1999). CASPubMed Google Scholar
Dundr, M., McNally, J. G., Cohen, J. & Misteli, T. Quantitation of GFP-fusion proteins in single living cells. J. Struct. Biol.140, 92–99 (2002). ArticleCASPubMed Google Scholar
Dundr, M. et al. A kinetic framework for a mammalian RNA polymerase in vivo. Science298, 1623–1626 (2002). ArticleCASPubMed Google Scholar
Loiodice, I. et al. The entire nup107–160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol. Biol. Cell15, 3333–3344 (2004). ArticleCASPubMedPubMed Central Google Scholar
Harel, A. et al. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell11, 853–864 (2003). ArticleCASPubMed Google Scholar
Walther, T. C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell113, 195–206 (2003). ArticleCASPubMed Google Scholar
Walther, T. C. et al. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J. Cell Biol.158, 63–77 (2002). ArticleCASPubMedPubMed Central Google Scholar
Cronshaw, J. M. & Matunis, M. J. The nuclear pore complex protein ALADIN is mislocalized in triple A syndrome. Proc. Natl Acad. Sci. USA100, 5823–5827 (2003). ArticleCASPubMedPubMed Central Google Scholar
Drummond, S. P. & Wilson, K. L. Interference with the cytoplasmic tail of gp210 disrupts “close apposition” of nuclear membranes and blocks nuclear pore dilation. J. Cell Biol.158, 53–62 (2002). ArticleCASPubMedPubMed Central Google Scholar
Olsson, M., Scheele, S. & Ekblom, P. Limited expression of nuclear pore membrane glycoprotein 210 in cell lines and tissues suggests cell-type specific nuclear pores in metazoans. Exp. Cell Res.292, 359–370 (2004). ArticleCASPubMed Google Scholar
Galy, V., Mattaj, I. W. & Askjaer, P. Caenorhabditis elegans nucleoporins Nup93 and Nup205 determine the limit of nuclear pore complex size exclusion in vivo. Mol. Biol. Cell14, 5104–5115 (2003). ArticleCASPubMedPubMed Central Google Scholar
Griffis, E. R., Craige, B., Dimaano, C., Ullman, K. S. & Powers, M. A. Distinct functional domains within nucleoporins Nup153 and Nup98 mediate transcription-dependent mobility. Mol. Biol. Cell15, 1991–2002 (2004). ArticleCASPubMedPubMed Central Google Scholar
Smith, A. E., Slepchenko, B. M., Schaff, J. C., Loew, L. M. & Macara, I. G. Systems analysis of Ran transport. Science295, 488–491 (2002). ArticleCASPubMed Google Scholar
Carrero, G., McDonald, D., Crawford, E., de Vries, G. & Hendzel, M. J. Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods29, 14–28 (2003). ArticleCASPubMed Google Scholar
Janin, J. in Protein–Protein Recognition (ed. Kleanthous, C.) 1–32 (Oxford University Press, New York, 2000). Google Scholar
Rabut, G. & Ellenberg, J. J. Microsc. Automatic real-time 3D cell tracking by fluorescence microscopy. 216, 131–137 (2004). ArticleCASPubMed Google Scholar