Mapping the dynamic organization of the nuclear pore complex inside single living cells (original) (raw)

References

  1. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).
    Article CAS PubMed Google Scholar
  2. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  3. Suntharalingam, M. & Wente, S. R. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775–789 (2003).
    Article CAS PubMed Google Scholar
  4. Daigle, N. et al. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol. 154, 71–84 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  5. Enninga, J., Levay, A. & Fontoura, B. M. Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. Mol. Cell. Biol. 23, 7271–7284 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  6. Belgareh, N. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154, 1147–1160 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  7. Nakielny, S., Shaikh, S., Burke, B. & Dreyfuss, G. Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain. EMBO J. 18, 1982–1995 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  8. Griffis, E. R., Altan, N., Lippincott-Schwartz, J. & Powers, M. A. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol. Biol. Cell 13, 1282–1297 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  9. Zolotukhin, A. S. & Felber, B. K. Nucleoporins nup98 and nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J. Virol. 73, 120–127 (1999).
    CAS PubMed PubMed Central Google Scholar
  10. Dilworth, D. J. et al. Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. J. Cell Biol. 153, 1465–1478 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  11. Lindsay, M. E., Plafker, K., Smith, A. E., Clurman, B. E. & Macara, I. G. Npap60/Nup50 is a tri-stable switch that stimulates importin-alpha:beta-mediated nuclear protein import. Cell 110, 349–360 (2002).
    Article CAS PubMed Google Scholar
  12. Denning, D. et al. The nucleoporin Nup60p functions as a Gsp1p–GTP-sensitive tether for Nup2p at the nuclear pore complex. J. Cell Biol. 154, 937–950 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  13. Guan, T. et al. Nup50, a nucleoplasmically oriented nucleoporin with a role in nuclear protein export. Mol. Cell. Biol. 20, 5619–5630 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  14. Bodoor, K. et al. Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J. Cell Sci. 112, 2253–2264 (1999).
    CAS PubMed Google Scholar
  15. Dundr, M., McNally, J. G., Cohen, J. & Misteli, T. Quantitation of GFP-fusion proteins in single living cells. J. Struct. Biol. 140, 92–99 (2002).
    Article CAS PubMed Google Scholar
  16. Dundr, M. et al. A kinetic framework for a mammalian RNA polymerase in vivo. Science 298, 1623–1626 (2002).
    Article CAS PubMed Google Scholar
  17. Loiodice, I. et al. The entire nup107–160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol. Biol. Cell 15, 3333–3344 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  18. Harel, A. et al. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11, 853–864 (2003).
    Article CAS PubMed Google Scholar
  19. Walther, T. C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).
    Article CAS PubMed Google Scholar
  20. Walther, T. C. et al. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J. Cell Biol. 158, 63–77 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  21. Cronshaw, J. M. & Matunis, M. J. The nuclear pore complex protein ALADIN is mislocalized in triple A syndrome. Proc. Natl Acad. Sci. USA 100, 5823–5827 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  22. Drummond, S. P. & Wilson, K. L. Interference with the cytoplasmic tail of gp210 disrupts “close apposition” of nuclear membranes and blocks nuclear pore dilation. J. Cell Biol. 158, 53–62 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  23. Olsson, M., Scheele, S. & Ekblom, P. Limited expression of nuclear pore membrane glycoprotein 210 in cell lines and tissues suggests cell-type specific nuclear pores in metazoans. Exp. Cell Res. 292, 359–370 (2004).
    Article CAS PubMed Google Scholar
  24. Galy, V., Mattaj, I. W. & Askjaer, P. Caenorhabditis elegans nucleoporins Nup93 and Nup205 determine the limit of nuclear pore complex size exclusion in vivo. Mol. Biol. Cell 14, 5104–5115 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  25. Griffis, E. R., Craige, B., Dimaano, C., Ullman, K. S. & Powers, M. A. Distinct functional domains within nucleoporins Nup153 and Nup98 mediate transcription-dependent mobility. Mol. Biol. Cell 15, 1991–2002 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  26. Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  27. Smith, A. E., Slepchenko, B. M., Schaff, J. C., Loew, L. M. & Macara, I. G. Systems analysis of Ran transport. Science 295, 488–491 (2002).
    Article CAS PubMed Google Scholar
  28. Ribbeck, K. & Gorlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  29. Carrero, G., McDonald, D., Crawford, E., de Vries, G. & Hendzel, M. J. Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29, 14–28 (2003).
    Article CAS PubMed Google Scholar
  30. Janin, J. in Protein–Protein Recognition (ed. Kleanthous, C.) 1–32 (Oxford University Press, New York, 2000).
    Google Scholar
  31. Rabut, G. & Ellenberg, J. J. Microsc. Automatic real-time 3D cell tracking by fluorescence microscopy. 216, 131–137 (2004).
    Article CAS PubMed Google Scholar

Download references