Stat3-induced apoptosis requires a molecular switch in PI(3)K subunit composition (original) (raw)
Schulze-Bergkamen, H. & Krammer, P. H. Apoptosis in cancer-implications for therapy. Semin. Oncol.31, 90–119 (2004). ArticleCAS Google Scholar
Kumar, R., Vadlamudi, R. K. & Adam, L. Apoptosis in mammary gland and cancer. Endocr. Relat. Cancer7, 257–269 (2000). ArticleCAS Google Scholar
Chapman, R. S. et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev.13, 2604–2616 (1999). ArticleCAS Google Scholar
Schwertfeger, K. L., Richert, M. M. & Anderson, S. M. Mammary gland involution is delayed by activated Akt in transgenic mice. Mol. Endocrinol.15, 867–881 (2001). ArticleCAS Google Scholar
Franke, T. F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell2, 727–736 (1995). Article Google Scholar
Levy, D. E. & Darnell, J. E. Jr. Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol.3, 651–662 (2002). ArticleCAS Google Scholar
Kritikou, E. A. et al. A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development130, 3459–3468 (2003). ArticleCAS Google Scholar
Yu, H. & Jove, R. The STATs of cancer - new molecular targets come of age. Nature Rev. Cancer4, 97–105 (2004). ArticleCAS Google Scholar
Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell95, 29–39 (1998). ArticleCAS Google Scholar
Otsu, M. et al. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell65, 91–104 (1991). ArticleCAS Google Scholar
Pons, S. et al. The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase. Mol. Cell Biol.15, 4453–4465 (1995). ArticleCAS Google Scholar
Antonetti, D. A., Algenstaedt, P. & Kahn, C. R. Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol. Cell Biol.16, 2195–2203 (1996). ArticleCAS Google Scholar
Inukai, K. et al. A novel 55-kDa regulatory subunit for phosphatidylinositol 3-kinase structurally similar to p55PIK is generated by alternative splicing of the p85 gene. J. Biol. Chem.271, 5317–5320 (1996). ArticleCAS Google Scholar
Fruman, D. A., Cantley, L. C. & Carpenter, C. L. Structural organization and alternative splicing of the murine phosphoinositide 3-kinase p85 alpha gene. Genomics37, 113–121 (1996). ArticleCAS Google Scholar
Inukai, K. et al. p85 gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase (PI 3-Kinase), p50, p55, and p85, with different PI 3-kinase activity elevating responses to insulin. J. Biol. Chem.272, 7873–7882 (1997). ArticleCAS Google Scholar
Vanhaesebroeck, B., Leevers, S. J., Panayotou, G. & Waterfield, M. D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci.22, 267–272 (1997). ArticleCAS Google Scholar
Cantley, L. C. The phosphoinositide 3-kinase pathway. Science296, 1655–1657 (2002). ArticleCAS Google Scholar
Ueki, K., Algenstaedt, P., Mauvais-Jarvis, F. & Kahn, C. R. Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85 regulatory subunit. Mol. Cell Biol.20, 8035–8046 (2000). ArticleCAS Google Scholar
Ueki, K. et al. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol. Cell Biol.22, 965–977 (2002). ArticleCAS Google Scholar
Inukai, K. et al. Five isoforms of the phosphatidylinositol 3-kinase regulatory subunit exhibit different associations with receptor tyrosine kinases and their tyrosine phosphorylations. FEBS Lett.490, 32–38 (2001). ArticleCAS Google Scholar
O'Farrell, A. M., Liu, Y., Moore, K. W. & Mui, A. L. IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J.16, 1006–1018 (1998). Article Google Scholar
Leaman, D. W. et al. Roles of JAKs in activation of STATs and stimulation of c-fos gene expression by epidermal growth factor. Mol. Cell Biol.16, 369–375 (1996). ArticleCAS Google Scholar
Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev.12, 2048–2060 (1998). ArticleCAS Google Scholar
Burdon, T., Smith, A. & Savatier, P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol.12, 432–438 (2002). ArticleCAS Google Scholar
Hallmann, D. et al. Altered signaling and cell cycle regulation in embryonal stem cells with a disruption of the gene for phosphoinositide 3-kinase regulatory subunit p85. J. Biol. Chem.278, 5099–5108 (2003). ArticleCAS Google Scholar
Kerouz, N. J., Horsch, D., Pons, S. & Kahn, C. R. Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J. Clin. Invest.100, 3164–3172 (1997). ArticleCAS Google Scholar
Torbenson, M. et al. STAT-3 overexpression and p21 up-regulation accompany impaired regeneration of fatty livers. Am. J. Pathol.161, 155–161 (2002). ArticleCAS Google Scholar
Dani, C. et al. Paracrine induction of stem cell renewal by LIF-deficient cells: a new ES cell regulatory pathway. Dev. Biol.203, 149–162 (1998). ArticleCAS Google Scholar
Vanhaesebroeck, B. et al. Distinct PI(3)Ks mediate mitogenic signalling and cell migration in macrophages. Nature Cell Biol.1, 69–71 (1999). ArticleCAS Google Scholar
Davuluri, R. V., Grosse, I. & Zhang, M. Q. Computational identification of promoters and first exons in the human genome. Nature Genet.4, 412–417 (2001). Erratum in Nature Genet.3, 459 (2002). Article Google Scholar