Actin and Arf1-dependent recruitment of a cortactin–dynamin complex to the Golgi regulates post-Golgi transport (original) (raw)

References

  1. Stamnes, M. Regulating the actin cytoskeleton during vesicular transport. Curr. Opin. Cell Biol. 14, 428–433 (2002).
    Article CAS PubMed Google Scholar
  2. Lippincott-Schwartz, J. Cytoskeletal proteins and Golgi dynamics. Curr. Opin. Cell Biol. 10, 52–59 (1998).
    Article CAS PubMed Google Scholar
  3. De Matteis, M. A. & Morrow, J. S. The role of ankyrin and spectrin in membrane transport and domain formation. Curr. Opin. Cell Biol. 10, 542–549 (1998).
    Article CAS PubMed Google Scholar
  4. Fucini, R. V., Chen, J. L., Sharma, C., Kessels, M. M. & Stamnes, M. Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1. Mol. Biol. Cell 13, 621–631 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  5. Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. cdc42 regulates the exit of apical and basolateral proteins from the _trans_-Golgi network. EMBO J. 20, 2171–2179 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  6. Luna, A. et al. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol. Biol. Cell 13, 866–879 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  7. Fucini, R. V. et al. Activated ADP-ribosylation factor assembles distinct pools of actin on golgi membranes. J. Biol. Chem. 275, 18824–18829 (2000).
    Article CAS PubMed Google Scholar
  8. Allan, V. J., Thompson, H. M. & McNiven, M. A. Motoring around the Golgi. Nature Cell Biol. 4, E236–E242 (2002).
    Article CAS PubMed Google Scholar
  9. di Campli, A. et al. Morphological changes in the Golgi complex correlate with actin cytoskeleton rearrangements. Cell Motil. Cytoskeleton 43, 334–348 (1999).
    Article CAS PubMed Google Scholar
  10. Valderrama, F. et al. Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur. J. Cell Biol. 76, 9–17 (1998).
    Article CAS PubMed Google Scholar
  11. Cao, H. et al. Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol. Cell Biol. 23, 2162–2170 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  12. McNiven, M. A. et al. Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J. Cell Biol. 151, 187–198 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  13. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).
    Article CAS PubMed Google Scholar
  14. Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995).
    Article CAS PubMed Google Scholar
  15. McNiven, M. A. Dynamin: a molecular motor with pinchase action. Cell 94, 151–154 (1998).
    Article CAS PubMed Google Scholar
  16. Hinshaw, J. E. Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16, 483–519 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  17. McNiven, M. A., Cao, H., Pitts, K. R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci. 25, 115–120 (2000).
    Article CAS PubMed Google Scholar
  18. Orth, J. D. & McNiven, M. A. Dynamin at the actin-membrane interface. Curr. Opin. Cell Biol. 15, 31–39 (2003).
    Article CAS PubMed Google Scholar
  19. Qualmann, B., Kessels, M. M. & Kelly, R. B. Molecular links between endocytosis and the actin cytoskeleton. J. Cell Biol. 150, F111–F116 (2000).
    Article CAS PubMed Google Scholar
  20. Schafer, D. A. Coupling actin dynamics and membrane dynamics during endocytosis. Curr. Opin. Cell Biol. 14, 76–81 (2002).
    Article CAS PubMed Google Scholar
  21. Krueger, E. W., Orth, J. D., Cao, H. & McNiven, M. A. A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol. Biol. Cell 14, 1085–1096 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  22. Orth, J. D., Krueger, E. W., Cao, H. & McNiven, M. A. The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc. Natl Acad. Sci. USA 99, 167–172 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  23. Leelavathi, D. E., Estes, L. W., Feingold, D. S. & Lombardi, B. Isolation of a Golgi-rich fraction from rat liver. Biochim. Biophys. Acta 211, 124–138 (1970).
    Article CAS Google Scholar
  24. Weed, S. A., Du, Y. & Parsons, J. T. Translocation of cortactin to the cell periphery is mediated by the small GTPase Rac1. J. Cell Sci. 111, 2433–2443 (1998).
    CAS PubMed Google Scholar
  25. Schwaninger, R., Plutner, H., Davidson, H. W., Pind, S. & Balch, W. E. Transport of protein between endoplasmic reticulum and Golgi compartments in semiintact cells. Methods Enzymol. 219, 110–124 (1992).
    Article CAS PubMed Google Scholar
  26. Brown, W. J., Goodhouse, J. & Farquhar, M. G. Mannose-6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and endosomes. J. Cell Biol. 103, 1235–1247 (1986).
    Article CAS PubMed Google Scholar
  27. Matovcik, L. M., Goodhouse, J. & Farquhar, M. G. The recycling itinerary of the 46 kDa mannose 6-phosphate receptor — Golgi to late endosomes — coincides with that of the 215 kDa M6PR. Eur. J. Cell Biol. 53, 203–211 (1990).
    CAS PubMed Google Scholar
  28. Benmerah, A., Bayrou, M., Cerf-Bensussan, N. & Dautry-Varsat, A. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J. Cell Sci. 112, 1303–1311 (1999).
    CAS PubMed Google Scholar
  29. Jones, S. M., Howell, K. E., Henley, J. R., Cao, H. & McNiven, M. A. Role of dynamin in the formation of transport vesicles from the _trans_-Golgi network. Science 279, 573–577 (1998).
    Article CAS PubMed Google Scholar
  30. De Matteis, M. A. & Morrow, J. S. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 113, 2331–2343 (2000).
    CAS PubMed Google Scholar
  31. Erickson, J. W., Zhang, C., Kahn, R. A., Evans, T. & Cerione, R. A. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J. Biol. Chem. 271, 26850–26854 (1996).
    Article CAS PubMed Google Scholar
  32. Cao, H., Thompson, H. M., Krueger, E. W. & McNiven, M. A. Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin. J. Cell Sci. 113, 1993–2002 (2000).
    CAS PubMed Google Scholar
  33. Maier, O., Knoblich, M. & Westermann, P. Dynamin II binds to the _trans_-Golgi network. Biochem. Biophys. Res. Commun. 223, 229–233 (1996).
    Article CAS PubMed Google Scholar
  34. Weaver, A. M. et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol. 11, 370–374 (2001).
    Article CAS PubMed Google Scholar
  35. Weaver, A. M. et al. Interaction of cortactin and N-WASp with Arp2/3 complex. Curr. Biol. 12, 1270–1278 (2002).
    Article CAS PubMed Google Scholar
  36. Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  37. Henley, J. R. & McNiven, M. A. Association of a dynamin-like protein with the Golgi apparatus in mammalian cells. J. Cell Biol. 133, 761–775 (1996).
    Article CAS PubMed Google Scholar
  38. Cao, H., Garcia, F. & McNiven, M. A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9, 2595–2609 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  39. Anderson, K. L. & McNiven, M. A. Vesicle dynamics during regulated secretion in a novel pancreatic acinar cell in vitro model. Eur. J. Cell Biol. 66, 25–38 (1995).
    CAS PubMed Google Scholar
  40. Toomre, D., Keller, P., White, J., Olivo, J. C. & Simons, K. Dual-color visualization of _trans_-Golgi network to plasma membrane traffic along microtubules in living cells. J. Cell Sci. 112, 21–33 (1999).
    CAS PubMed Google Scholar
  41. Davidson, H. W. & Balch, W. E. Differential inhibition of multiple vesicular transport steps between the endoplasmic reticulum and _trans_-Golgi network. J. Biol. Chem. 268, 4216–4226 (1993).
    CAS PubMed Google Scholar
  42. Nishimura, N., Plutner, H., Hahn, K. & Balch, W. E. The delta subunit of AP-3 is required for efficient transport of VSV-G from the _trans_-Golgi network to the cell surface. Proc. Natl Acad. Sci. USA 99, 6755–6760 (2002).
    Article CAS PubMed PubMed Central Google Scholar

Download references