Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase (original) (raw)

References

  1. Webb, D.J., Parsons, J.T. & Horwitz, A.F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nature Cell Biol. 4, E97–E100 (2002).
    Article CAS PubMed Google Scholar
  2. Sastry, S.K. & Burridge, K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res. 261, 25–36 (2000).
    Article CAS PubMed Google Scholar
  3. Small, J.V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol. 12, 112–120 (2002).
    Article CAS PubMed Google Scholar
  4. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).
    Article CAS PubMed Google Scholar
  5. Webb, D.J. et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biol. 6, 154–161 (2004).
    Article CAS PubMed Google Scholar
  6. Arthur, W.T., Petch, L.A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol. 10, 719–722 (2000).
    Article CAS PubMed Google Scholar
  7. Ren, X.D. et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113, 3673–3678 (2000).
    CAS PubMed Google Scholar
  8. Franco, S.J. et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature Cell Biol. 6, 977–983 (2004).
    Article CAS PubMed Google Scholar
  9. Kaverina, I., Krylyshkina, O. & Small, J.V. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146, 1033–1044 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  10. Small, J.V., Geiger, B., Kaverina, I. & Bershadsky, A. How do microtubules guide migrating cells? Nature Rev. Mol. Cell Biol. 3, 957–964 (2002).
    Article CAS Google Scholar
  11. Krylyshkina, O. et al. Modulation of substrate adhesion dynamics via microtubule targeting requires kinesin-1. J. Cell Biol. 156, 349–359 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  12. Bershadsky, A., Chausovsky, A., Becker, E., Lyubimova, A. & Geiger, B. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr. Biol. 6, 1279–1289 (1996).
    Article CAS PubMed Google Scholar
  13. Liu, B.P., Chrzanowska-Wodnicka, M. & Burridge, K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhes. Commun. 5, 249–255 (1998).
    Article CAS PubMed Google Scholar
  14. Ren, X.D., Kiosses, W.B. & Schwartz, M.A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  15. Hauck, C.R., Hsia, D.A. & Schlaepfer, D.D. The focal adhesion kinase — a regulator of cell migration and invasion. IUBMB Life 53, 115–119 (2002).
    Article CAS PubMed Google Scholar
  16. Smilenov, L.B., Mikhailov, A., Pelham, R.J., Marcantonio, E.E. & Gundersen, G.G. Focal adhesion motility revealed in stationary fibroblasts. Science 286, 1172–1174 (1999).
    Article CAS PubMed Google Scholar
  17. Krylyshkina, O. et al. Nanometer targeting of microtubules to focal adhesions. J. Cell Biol. 161, 853–859 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  18. Ory, S., Destaing, O. & Jurdic, P. Microtubule dynamics differentially regulates Rho and Rac activity and triggers Rho-independent stress fiber formation in macrophage polykaryons. Eur. J. Cell Biol. 81, 351–362 (2002).
    Article CAS PubMed Google Scholar
  19. Cook, T.A., Nagasaki, T. & Gundersen, G.G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol. 141, 175–185 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  20. Waterman-Storer, C.M., Worthylake, R.A., Liu, B.P., Burridge, K. & Salmon, E.D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nature Cell Biol. 1, 45–50 (1999).
    Article CAS PubMed Google Scholar
  21. Sanders, L.C., Matsumura, F., Bokoch, G.M. & de Lanerolle, P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 283, 2083–2085 (1999).
    Article CAS PubMed Google Scholar
  22. Sander, E.E., ten Klooster, J.P., van Delft, S., van der Kammen, R.A. & Collard, J.G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009–1022 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  23. Sieg, D.J., Hauck, C.R. & Schlaepfer, D.D. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J. Cell Sci. 112, 2677–2691 (1999).
    CAS PubMed Google Scholar
  24. Schlaepfer, D.D., Hauck, C.R. & Sieg, D.J. Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol. 71, 435–478 (1999).
    Article CAS PubMed Google Scholar
  25. Hagel, M. et al. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol. Cell. Biol. 22, 901–915 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  26. Klinghoffer, R.A., Sachsenmaier, C., Cooper, J.A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  27. Regen, C.M. & Horwitz, A.F. Dynamics of β1 integrin-mediated adhesive contacts in motile fibroblasts. J. Cell Biol. 119, 1347–1359 (1992).
    Article CAS PubMed Google Scholar
  28. Pierini, L.M., Lawson, M.A., Eddy, R.J., Hendey, B. & Maxfield, F.R. Oriented endocytic recycling of α5β1 in motile neutrophils. Blood 95, 2471–2480 (2000).
    CAS PubMed Google Scholar
  29. Conner, S.D. & Schmid, S.L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).
    Article CAS PubMed Google Scholar
  30. Herskovits, J.S., Burgess, C.C., Obar, R.A. & Vallee, R.B. Effects of mutant rat dynamin on endocytosis. J. Cell Biol. 122, 565–578 (1993).
    Article CAS PubMed Google Scholar
  31. Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol. 2, 125–127 (2000).
    Article CAS PubMed Google Scholar
  32. Cao, H., Garcia, F. & McNiven, M.A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9, 2595–2609 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  33. Ochoa, G.C. et al. A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell Biol. 150, 377–389 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  34. Palazzo, A.F., Eng, C.H., Schlaepfer, D.D., Marcantonio, E.E. & Gundersen, G.G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303, 836–839 (2004).
    Article CAS PubMed Google Scholar
  35. Chan, P.Y., Kanner, S.B., Whitney, G. & Aruffo, A. A transmembrane-anchored chimeric focal adhesion kinase is constitutively activated and phosphorylated at tyrosine residues identical to pp125FAK. J. Biol. Chem. 269, 20567–20574 (1994).
    CAS PubMed Google Scholar
  36. Herskovits, J.S., Shpetner, H.S., Burgess, C.C. & Vallee, R.B. Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Proc. Natl Acad. Sci. USA 90, 11468–11472 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  37. Schlaepfer, D.D. & Hunter, T. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol. Cell. Biol. 16, 5623–5633 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  38. Kharbanda, S. et al. Stimulation of human monocytes with macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin. Proc. Natl Acad. Sci. USA 92, 6132–6136 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  39. Dujardin, D.L. et al. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 163, 1205–1211 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  40. Maddox, A. & Burridge, K. RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J. Cell Biol. 160, 255–265 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  41. Schafer, D.A. Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5, 463–469 (2004).
    Article CAS PubMed Google Scholar
  42. Orth, J.D. & McNiven, M.A. Dynamin at the actin-membrane interface. Curr. Opin. Cell Biol. 15, 31–39 (2003).
    Article CAS PubMed Google Scholar
  43. Shpetner, H.S. & Vallee, R.B. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733–735 (1992).
    Article CAS PubMed Google Scholar
  44. Schlunck, G. et al. Modulation of Rac localization and function by dynamin. Mol. Biol. Cell 15, 256–267 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  45. Gundersen, G.G., Kim, I. & Chapin, C.J. Induction of stable microtubules in 3T3 fibroblasts by TGF-β and serum. J. Cell Sci. 107, 645–659 (1994).
    CAS PubMed Google Scholar
  46. Kilmartin, J.V., Wright, B. & Milstein, C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J. Cell Biol. 93, 576–582 (1982).
    Article CAS PubMed Google Scholar
  47. Gundersen, G.G., Kalnoski, M.H. & Bulinski, J.C. Distinct populations of microtubules: tyrosinated and nontyrosinated α tubulin are distributed differently in vivo. Cell 38, 779–789 (1984).
    Article CAS PubMed Google Scholar
  48. Palazzo, A.F., Cook, T.A., Alberts, A.S. & Gundersen, G.G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001).
    Article CAS PubMed Google Scholar
  49. Kranenburg, O., Verlaan, I. & Moolenaar, W. Gi-mediated tyrosine phosphorylation of Grb2(growth-factor-receptor-bound protein 2)-bound dynamin-II by lysophosphatidic acid. Biochem. J. 339, 11–14 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  50. Mikhailov, A. & Gundersen, G.G. Relationship between microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or taxol. Cell Motil. Cytoskeleton 41, 325–440 (1998).
    Article CAS PubMed Google Scholar

Download references