The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene (original) (raw)
Shields, J. M., Christy, R. J. & Yang, V. W. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J. Biol. Chem.271, 20009–20017 (1996). ArticleCASPubMed Google Scholar
Garrett-Sinha, L. A., Eberspaecher, H., Seldin, M. F. & de Crombrugghe, B. A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J. Biol. Chem.271, 31384–31390 (1996). ArticleCASPubMed Google Scholar
Chen, X., Whitney, E. M., Gao, S. Y. & Yang, V. W. Transcriptional profiling of Kruppel-like factor 4 reveals a function in cell cycle regulation and epithelial differentiation. J. Mol. Biol.326, 665–677 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chen, X. et al. Kruppel-like factor 4 (gut-enriched Kruppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle. J. Biol. Chem.276, 30423–30428 (2001). ArticleCASPubMed Google Scholar
Geiman, D. E., Ton-That, H., Johnson, J. M. & Yang, V. W. Transactivation and growth suppression by the gut-enriched Kruppel-like factor (Kruppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction. Nucleic Acids Res.28, 1106–1113 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zhang, W. et al. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J. Biol. Chem.275, 18391–18398 (2000). ArticleCASPubMed Google Scholar
Jaubert, J., Cheng, J. & Segre, J. A. Ectopic expression of kruppel like factor 4 (Klf4) accelerates formation of the epidermal permeability barrier. Development130, 2767–2777 (2003). ArticleCASPubMed Google Scholar
Katz, J. P. et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development129, 2619–2628 (2002). CASPubMed Google Scholar
Segre, J. A., Bauer, C. & Fuchs, E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nature Genet.22, 356–360 (1999). ArticleCASPubMed Google Scholar
Black, A. R., Black, J. D. & Azizkhan-Clifford, J. Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J. Cell Physiol.188, 143–160 (2001). ArticleCASPubMed Google Scholar
Ohnishi, S. et al. Downregulation and growth inhibitory effect of epithelial-type Kruppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochem. Biophys. Res. Commun.308, 251–256 (2003). ArticleCASPubMed Google Scholar
Dang, D. T., Mahatan, C. S., Dang, L. H., Agboola, I. A. & Yang, V. W. Expression of the gut-enriched Kruppel-like factor (Kruppel-like factor 4) gene in the human colon cancer cell line RKO is dependent on CDX2. Oncogene20, 4884–4890 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dang, D. T. et al. Decreased expression of the gut-enriched Kruppel-like factor gene in intestinal adenomas of multiple intestinal neoplasia mice and in colonic adenomas of familial adenomatous polyposis patients. FEBS Lett.476, 203–207 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ton-That, H., Kaestner, K. H., Shields, J. M., Mahatanankoon, C. S. & Yang, V. W. Expression of the gut-enriched Kruppel-like factor gene during development and intestinal tumorigenesis. FEBS Lett.419, 239–243 (1997). ArticleCASPubMedPubMed Central Google Scholar
Shie, J. L. et al. Role of gut-enriched Kruppel-like factor in colonic cell growth and differentiation. Am. J. Physiol. Gastrointest. Liver Physiol.279, G806–G814 (2000). ArticleCASPubMed Google Scholar
Zhao, W. et al. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene23, 395–402 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wei, D. et al. Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res.65, 2746–2754 (2005). ArticleCASPubMed Google Scholar
Katz, J. P. et al. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology128, 935–945 (2005). ArticleCASPubMed Google Scholar
Luo, A. et al. Discovery of Ca(2+)-relevant and differentiation-associated genes downregulated in esophageal squamous cell carcinoma using cDNA microarray. Oncogene1, 1 (2003). Google Scholar
Dang, D. T. et al. Overexpression of Kruppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity. Oncogene22, 3424–3430 (2003). ArticleCASPubMedPubMed Central Google Scholar
Foster, K. W. et al. Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res.60, 6488–6495 (2000). CASPubMed Google Scholar
Foster, K. W. et al. Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF. Cell Growth Differ.10, 423–434 (1999). CASPubMed Google Scholar
Foster, K. W. et al. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene24, 1491–1500 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bos, J. L. Ras oncogenes in human cancer: a review. Cancer Res.49, 4682–4689 (1989). CASPubMed Google Scholar
Palmero, I., Pantoja, C. & Serrano, M. p19ARF links the tumour suppressor p53 to Ras. Nature395, 125–126 (1998). ArticleCASPubMed Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). ArticleCASPubMed Google Scholar
Peeper, D. S., Dannenberg, J. H., Douma, S., te Riele, H. & Bernards, R. Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nature Cell Biol.3, 198–203 (2001). ArticleCASPubMed Google Scholar
Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell2, 103–112 (2002). ArticleCASPubMed Google Scholar
Peeper, D. S. et al. A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nature Cell Biol.4, 148–153 (2002). ArticleCASPubMed Google Scholar
Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell2, 243–247 (2002). ArticleCASPubMed Google Scholar
Deng, C., Zhang, P., Harper, J. W., Elledge, S. J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell82, 675–684 (1995). ArticleCASPubMed Google Scholar
Li, C. et al. The critical role of the PE21 element in oncostatin M-mediated transcriptional repression of the p53 tumor suppressor gene in breast cancer cells. Oncogene20, 8193–8202 (2001). ArticleCASPubMed Google Scholar
Filmus, J. et al. Induction of cyclin D1 overexpression by activated ras. Oncogene9, 3627–3633 (1994). CASPubMed Google Scholar
Peeper, D. S. et al. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature386, 177–181 (1997). ArticleCASPubMed Google Scholar
Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev.13, 1501–1512 (1999). ArticleCASPubMed Google Scholar
Jacobs, J. J. et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nature Genet.26, 291–299 (2000). ArticleCASPubMed Google Scholar
Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature304, 596–602 (1983). ArticleCASPubMed Google Scholar
Ruley, H. E. Adenovirus region E1A enables viral and cellular transforming genes to transform primary cells in cultures. Nature304, 602–606 (1983). ArticleCASPubMed Google Scholar
Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Rev. Cancer3, 807–820 (2003). ArticleCAS Google Scholar
Li, C. Y., Suardet, L. & Little, J. B. Potential role of WAF1/Cip1/p21 as a mediator of TGF-β cytoinhibitory effect. J. Biol. Chem.270, 4971–4974 (1995). ArticleCASPubMed Google Scholar
Elbendary, A. et al. Transforming growth factor β1 can induce CIP1/WAF1 expression independent of the p53 pathway in ovarian cancer cells. Cell Growth Differ.5, 1301–1307 (1994). CASPubMed Google Scholar
Datto, M. B. et al. Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc. Natl Acad. Sci. USA92, 5545–5549 (1995). ArticleCASPubMedPubMed Central Google Scholar
Zarling, J. M. et al. Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells. Proc. Natl Acad. Sci. USA83, 9739–9743 (1986). ArticleCASPubMedPubMed Central Google Scholar
Bellido, T., O'Brien, C. A., Roberson, P. K. & Manolagas, S. C. Transcriptional activation of the p21(WAF1,CIP1,SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J. Biol. Chem.273, 21137–21144 (1998). ArticleCASPubMed Google Scholar
Shiohara, M. et al. Absence of WAF1 mutations in a variety of human malignancies. Blood84, 3781–3784 (1994). CASPubMed Google Scholar
Rowland, B. D. et al. E2F transcriptional repressor complexes are critical downstream targets of p19(ARF)/p53-induced proliferative arrest. Cancer Cell2, 55–65 (2002). ArticleCASPubMed Google Scholar
Jenkins, T. D., Opitz, O. G., Okano, J. & Rustgi, A. K. Transactivation of the human keratin 4 and Epstein-Barr virus ED-L2 promoters by gut-enriched Kruppel-like factor. J. Biol. Chem.273, 10747–10754 (1998). ArticleCASPubMed Google Scholar
Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature428, 431–437 (2004). ArticleCASPubMed Google Scholar
Dirac, A. M. & Bernards, R. Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J. Biol. Chem.278, 11731–11734 (2003). ArticleCASPubMed Google Scholar
Raman, V. et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature405, 974–978 (2000). ArticleCASPubMed Google Scholar