A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development (original) (raw)
Millar, J. K. et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet.9, 1415–1423 (2000). ArticleCAS Google Scholar
Blackwood, D. H. et al. Schizophrenia and affective disorders — cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am. J. Hum. Genet.69, 428–433 (2001). ArticleCAS Google Scholar
Ekelund, J. et al. Chromosome 1 loci in Finnish schizophrenia families. Hum. Mol. Genet.10, 1611–1617 (2001). ArticleCAS Google Scholar
Harrison, P. J. & Weinberger, D. R. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry10, 40–68 (2005). ArticleCAS Google Scholar
Hodgkinson, C. A. et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am. J. Hum. Genet.75, 862–872 (2004). ArticleCAS Google Scholar
Hennah, W. et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum. Mol. Genet.12, 3151–3159 (2003). ArticleCAS Google Scholar
Akbarian, S. et al. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch. Gen. Psychiatry50, 169–177 (1993). ArticleCAS Google Scholar
Lewis, D. A. & Levitt, P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci.25, 409–432 (2002). ArticleCAS Google Scholar
Weinberger, D. R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry44, 660–669 (1987). ArticleCAS Google Scholar
Harrison, P. J. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain122, 593–624 (1999). Article Google Scholar
Sawa, A. & Snyder, S. H. Schizophrenia: diverse approaches to a complex disease. Science296, 692–695 (2002). ArticleCAS Google Scholar
Bielas, S., Higginbotham, H., Koizumi, H., Tanaka, T. & Gleeson, J. G. Cortical neuronal migration mutants suggest separate but intersecting pathways. Annu. Rev. Cell Dev. Biol.20, 593–618 (2004). ArticleCAS Google Scholar
Ross, M. E. & Walsh, C. A. Human brain malformations and their lessons for neuronal migration. Annu. Rev. Neurosci.24, 1041–1070 (2001). ArticleCAS Google Scholar
Hatten, M. E. New directions in neuronal migration. Science297, 1660–1663 (2002). ArticleCAS Google Scholar
Gupta, A., Tsai, L. H. & Wynshaw-Boris, A. Life is a journey: a genetic look at neocortical development. Nature Rev. Genet.3, 342–355 (2002). ArticleCAS Google Scholar
Reiner, O. et al. Isolation of a Miller-Dieker lissencephaly gene containing G protein β-subunit-like repeats. Nature364, 717–721 (1993). ArticleCAS Google Scholar
Shu, T. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron44, 263–277 (2004). ArticleCAS Google Scholar
Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nature Genet.19, 333–339 (1998). ArticleCAS Google Scholar
Wynshaw-Boris, A. & Gambello, M. J. LIS1 and dynein motor function in neuronal migration and development. Genes Dev.15, 639–651 (2001). ArticleCAS Google Scholar
Assadi, A. H. et al. Interaction of reelin signaling and Lis1 in brain development. Nature Genet.35, 270–276 (2003). ArticleCAS Google Scholar
Niethammer, M. et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron28, 697–711 (2000). ArticleCAS Google Scholar
Sasaki, S. et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron28, 681–696 (2000). ArticleCAS Google Scholar
Ahmad, F. J., Echeverri, C. J., Vallee, R. B. & Baas, P. W. Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J. Cell Biol.140, 391–401 (1998). ArticleCAS Google Scholar
Waterman-Storer, C. M. et al. The interaction between cytoplasmic dynein and dynactin is required for fast axonal transport. Proc. Natl Acad. Sci. USA94, 12180–12185 (1997). ArticleCAS Google Scholar
Solecki, D. J., Model, L., Gaetz, J., Kapoor, T. M. & Hatten, M. E. Par6α signaling controls glial-guided neuronal migration. Nature Neurosci.7, 1195–1203 (2004). ArticleCAS Google Scholar
Tanaka, T. et al. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol.165, 709–721 (2004). ArticleCAS Google Scholar
Tsai, L. H. & Gleeson, J. G. Nucleokinesis in neuronal migration. Neuron46, 383–388 (2005). ArticleCAS Google Scholar
Ozeki, Y. et al. Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc. Natl Acad. Sci. USA100, 289–294 (2003). ArticleCAS Google Scholar
Morris, J. A., Kandpal, G., Ma, L. & Austin, C. P. DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum. Mol. Genet.12, 1591–1608 (2003). ArticleCAS Google Scholar
Millar, J. K., Christie, S. & Porteous, D. J. Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem. Biophys. Res. Commun.311, 1019–1025 (2003). ArticleCAS Google Scholar
Brandon, N. J. et al. Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol. Cell Neurosci.25, 42–55 (2004). ArticleCAS Google Scholar
Miyoshi, K. et al. DISC1 localizes to the centrosome by binding to kendrin. Biochem. Biophys. Res. Commun.317, 1195–1199 (2004). ArticleCAS Google Scholar
Miyoshi, K. et al. Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol. Psychiatry8, 685–694 (2003). ArticleCAS Google Scholar
Smith, D. S. et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nature Cell Biol.2, 767–775 (2000). ArticleCAS Google Scholar
Yu, J. Y., DeRuiter, S. L. & Turner, D. L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA99, 6047–6052 (2002). ArticleCAS Google Scholar
Tabata, H. & Nakajima, K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience103, 865–872 (2001). ArticleCAS Google Scholar
Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nature Neurosci.6, 1277–1283 (2003). ArticleCAS Google Scholar
Xie, Z., Sanada, K., Samuels, B. A., Shih, H. & Tsai, L. H. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell114, 469–482 (2003). ArticleCAS Google Scholar
Tarricone, C. et al. Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron44, 809–821 (2004). CASPubMed Google Scholar
Sachs, N. A. et al. A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol. Psychiatry10, 758–764 (2005). ArticleCAS Google Scholar
Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature Genet.18, 106–108 (1998). ArticleCAS Google Scholar
Hayashi, M. A. et al. Inhibition of NUDEL (nuclear distribution element-like)-oligopeptidase activity by disrupted-in-schizophrenia 1. Proc. Natl Acad. Sci. USA102, 3828–3833 (2005). ArticleCAS Google Scholar
Sawa, A., Khan, A. A., Hester, L. D. & Snyder, S. H. Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc. Natl Acad. Sci. USA94, 11669–11674 (1997). ArticleCAS Google Scholar
Sawa, A. et al. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nature Med.5, 1194–1198 (1999). ArticleCAS Google Scholar
Tomoda, T., Kim, J. H., Zhan, C. & Hatten, M. E. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev.18, 541–558 (2004). ArticleCAS Google Scholar
Nakajima, K., Mikoshiba, K., Miyata, T., Kudo, C. & Ogawa, M. Disruption of hippocampal development in vivo by CR-50 mAb against reelin. Proc. Natl Acad. Sci. USA94, 8196–8201 (1997). ArticleCAS Google Scholar