Par6α signaling controls glial-guided neuronal migration (original) (raw)

References

  1. Hatten, M.E. New directions in neuronal migration. Science 297, 1660–1663 (2002).
    Article CAS PubMed Google Scholar
  2. Rakic, P. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J. Comp. Neurol. 141, 283–312 (1971).
    Article CAS PubMed Google Scholar
  3. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83 (1972).
    CAS PubMed Google Scholar
  4. Edmondson, J.C. & Hatten, M.E. Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J. Neurosci. 7, 1928–1934 (1987).
    Article CAS PubMed PubMed Central Google Scholar
  5. Gregory, W.A., Edmondson, J.C., Hatten, M.E. & Mason, C.A. Cytology and neuron-glial apposition of migrating cerebellar granule cells in vitro. J. Neurosci. 8, 1728–1738 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  6. O'Rourke, N.A., Dailey, M.E., Smith, S.J. & McConnell, S.K. Diverse migratory pathways in the developing cerebral cortex. Science 258, 299–302 (1992).
    Article CAS PubMed Google Scholar
  7. Komuro, H. & Rakic, P. Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J. Neurosci. 18, 1478–1490 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  8. Nadarajah, B., Brunstrom, J.E., Grutzendler, J., Wong, R.O. & Pearlman, A.L. Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143–150 (2001).
    Article CAS PubMed Google Scholar
  9. Gasser, U.E. & Hatten, M.E. Central nervous system neurons migrate on astroglial fibers from heterotypic brain regions in vitro. Proc. Natl Acad. Sci. USA 87, 4543–4547 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  10. Rivas, R. & Hatten, M. Motility and cytoskeletal organization of migrating cerebellar granule neurons. J. Neurosci. 15, 981–989 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  11. Rakic, P., Knyihar-Csillik, E. & Csillik, B. Polarity of microtubule assemblies during neuronal cell migration. Proc. Natl Acad. Sci. USA 93, 9218–9222 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  12. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat. Genet. 19, 333–339 (1998).
    Article CAS PubMed Google Scholar
  13. Gleeson, J.G., Lin, P.T., Flanagan, L.A. & Walsh, C.A. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257–271 (1999).
    Article CAS PubMed Google Scholar
  14. Smith, D.S. et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat. Cell Biol. 2, 767–775 (2000).
    Article CAS PubMed Google Scholar
  15. Sheen, V.L. et al. Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Hum. Mol. Genet. 10, 1775–1783 (2001).
    Article CAS PubMed Google Scholar
  16. Hatten, M.E. Central nervous system neuronal migration. Annu. Rev. Neurosci. 22, 511–539 (1999).
    Article CAS PubMed Google Scholar
  17. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).
    Article CAS PubMed Google Scholar
  18. Schaefer, A.W., Kabir, N. & Forscher, P. Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J. Cell Biol. 158, 139–152 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  19. Saxton, W.M. et al. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99, 2175–2186 (1984).
    Article CAS PubMed Google Scholar
  20. Wadsworth, P. & Salmon, E.D. Microtubule dynamics in mitotic spindles of living cells. Ann. N Y Acad. Sci. 466, 580–592 (1986).
    Article CAS PubMed Google Scholar
  21. Etienne-Manneville, S. & Hall, A. Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr. Opin. Cell Biol. 15, 67–72 (2003).
    Article CAS PubMed Google Scholar
  22. Henrique, D. & Schweisguth, F. Cell polarity: the ups and downs of the Par6/aPKC complex. Curr. Opin. Genet. Dev. 13, 341–350 (2003).
    Article CAS PubMed Google Scholar
  23. Koonce, M.P. et al. Dynein motor regulation stabilizes interphase microtubule arrays and determines centrosome position. EMBO J. 18, 6786–6792 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  24. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106, 489–498 (2001).
    Article CAS PubMed Google Scholar
  25. Yvon, A.M. et al. Centrosome reorientation in wound-edge cells is cell type specific. Mol. Biol. Cell 13, 1871–1880 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  26. Steuer, E.R., Wordeman, L., Schroer, T.A. & Sheetz, M.P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266–268 (1990).
    Article CAS PubMed Google Scholar
  27. Echeverri, C.J., Paschal, B.M., Vaughan, K.T. & Vallee, R.B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).
    Article CAS PubMed Google Scholar
  28. Hatten, M.E., Liem, R.K. & Mason, C.A. Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro. J. Neurosci. 6, 2676–2683 (1986).
    Article CAS PubMed PubMed Central Google Scholar
  29. Piel, M., Nordberg, J., Euteneuer, U. & Bornens, M. Centrosome-dependent exit of cytokinesis in animal cells. Science 291, 1550–1553 (2001).
    Article CAS PubMed Google Scholar
  30. Paoletti, A., Moudjou, M., Paintrand, M., Salisbury, J.L. & Bornens, M. Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J. Cell Sci. 109, 3089–3102 (1996).
    CAS PubMed Google Scholar
  31. Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J. & Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  32. Ahmad, F.J. et al. Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nat. Cell Biol. 2, 276–280 (2000).
    Article CAS PubMed Google Scholar
  33. Palazzo, A.F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol. 11, 1536–1541 (2001).
    Article CAS PubMed Google Scholar
  34. Burakov, A., Nadezhdina, E., Slepchenko, B. & Rodionov, V. Centrosome positioning in interphase cells. J. Cell Biol. 162, 963–969 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  35. Dujardin, D.L. et al. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 163, 1205–1211 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  36. Busson, S., Dujardin, D., Moreau, A., Dompierre, J. & De Mey, J.R. Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr. Biol. 8, 541–544 (1998).
    Article CAS PubMed Google Scholar
  37. Salina, D. et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108, 97–107 (2002).
    Article CAS PubMed Google Scholar
  38. Zmuda, J.F. & Rivas, R.J. The Golgi apparatus and the centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro. Cell Motil. Cytoskeleton 41, 18–38 (1998).
    Article CAS PubMed Google Scholar
  39. Etemad-Moghadam, B., Guo, S. & Kemphues, K.J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83, 743–752 (1995).
    Article CAS PubMed Google Scholar
  40. Grill, S.W., Gonczy, P., Stelzer, E.H. & Hyman, A.A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630–633 (2001).
    Article CAS PubMed Google Scholar
  41. Tsou, M.F., Ku, W., Hayashi, A. & Rose, L.S. PAR-dependent and geometry-dependent mechanisms of spindle positioning. J. Cell Biol. 160, 845–855 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  42. Kaltschmidt, J.A. & Brand, A.H. Asymmetric cell division: microtubule dynamics and spindle asymmetry. J. Cell Sci. 115, 2257–2264 (2002).
    CAS PubMed Google Scholar
  43. Labbe, J.C., Maddox, P.S., Salmon, E.D. & Goldstein, B. PAR proteins regulate microtubule dynamics at the cell cortex in C. elegans. Curr. Biol. 13, 707–714 (2003).
    Article CAS PubMed Google Scholar
  44. Moritz, M., Braunfeld, M.B., Sedat, J.W., Alberts, B. & Agard, D.A. Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature 378, 638–640 (1995).
    Article CAS PubMed Google Scholar
  45. Severson, A.F. & Bowerman, B. Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles in Caenorhabditis elegans. J. Cell Biol. 161, 21–26 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  46. Rosenblatt, J., Cramer, L.P., Baum, B. & McGee, K.M. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117, 361–372 (2004).
    Article CAS PubMed Google Scholar
  47. Paddison, P.J., Caudy, A.A., Sachidanandam, R. & Hannon, G.J. Short hairpin activated gene silencing in mammalian cells. Methods Mol. Biol. 265, 85–100 (2004).
    CAS PubMed Google Scholar
  48. Solecki, D.J., Liu, X.L., Tomoda, T., Fang, Y. & Hatten, M.E. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 31, 557–568 (2001).
    Article CAS PubMed Google Scholar
  49. Hatten, M.E. Neuronal regulation of astroglial morphology and proliferation in vitro. J. Cell Biol. 100, 384–396 (1985).
    Article CAS PubMed Google Scholar
  50. Stoppini, L., Buchs, P.A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).
    Article CAS PubMed Google Scholar

Download references