Control of Rad52 recombination activity by double-strand break-induced SUMO modification (original) (raw)
References
van Gent, D. C., Hoeijmakers, J. H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nature Rev. Genet.2, 196–206 (2001). ArticleCAS Google Scholar
Symington, L. S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev.66, 630–670 (2002). ArticleCAS Google Scholar
Krogh, B. O. & Symington, L. S. Recombination proteins in yeast. Annu. Rev. Genet.38, 233–271 (2004). ArticleCAS Google Scholar
Johnson, E. S. Protein modification by sumo. Annu. Rev. Biochem.73, 355–382 (2004). ArticleCAS Google Scholar
Bishop, D. K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell69, 439–456 (1992). ArticleCAS Google Scholar
Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141 (2002). ArticleCAS Google Scholar
Sacher, M., Pfander, B. & Jentsch, S. Identification of SUMO-protein conjugates. Methods Enzymol.399, 392–404 (2005). ArticleCAS Google Scholar
Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA102, 4777–4782 (2005). ArticleCAS Google Scholar
Ho, J. C., Warr, N. J., Shimizu, H. & Watts, F. Z. SUMO modification of Rad22, the Schizosaccharomyces pombe homologue of the recombination protein Rad52. Nucleic Acids Res.29, 4179–4186 (2001). ArticleCAS Google Scholar
Johnson, E. S. & Blobel, G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol.147, 981–994 (1999). ArticleCAS Google Scholar
Kagawa, W. et al. Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Mol. Cell10, 359–371 (2002). ArticleCAS Google Scholar
San-Segundo, P. A. & Roeder, G. S. Pch2 links chromatin silencing to meiotic checkpoint control. Cell97, 313–324 (1999). ArticleCAS Google Scholar
Schwacha, A. & Kleckner, N. Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell90, 1123–1135 (1997). ArticleCAS Google Scholar
Roeder, G. S. & Bailis, J. M. The pachytene checkpoint. Trends Genet.16, 395–403 (2000). ArticleCAS Google Scholar
Hong, E. J. & Roeder, G. S. A role for Ddc1 in signaling meiotic double-strand breaks at the pachytene checkpoint. Genes Dev.16, 363–376 (2002). ArticleCAS Google Scholar
Ramotar, D. & Wang, H. Protective mechanisms against the antitumor agent bleomycin: lessons from Saccharomyces cerevisiae. Curr. Genet.43, 213–224 (2003). ArticleCAS Google Scholar
Schiestl, R. H., Prakash, S. & Prakash, L. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics124, 817–831 (1990). CASPubMedPubMed Central Google Scholar
Torres, J. Z., Schnakenberg, S. L. & Zakian, V. A. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol. Cell Biol.24, 3198–3212 (2004). ArticleCAS Google Scholar
Schmidt, K. H. & Kolodner, R. D. Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase. Mol. Cell Biol.24, 3213–3226 (2004). ArticleCAS Google Scholar
Gangloff, S., Soustelle, C. & Fabre, F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nature Genet.25, 192–194 (2000). ArticleCAS Google Scholar
Ooi, S. L., Shoemaker, D. D. & Boeke, J. D. DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nature Genet.35, 277–286 (2003). ArticleCAS Google Scholar
Torres, J. Z., Bessler, J. B. & Zakian, V. A. Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p. Genes Dev.18, 498–503 (2004). ArticleCAS Google Scholar
Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J. E. Srs2 and Sgs1–Top3 suppress crossovers during double-strand break repair in yeast. Cell115, 401–411 (2003). ArticleCAS Google Scholar
Bai, Y. & Symington, L. S. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev.10, 2025–2037 (1996). ArticleCAS Google Scholar
Krogan, N. J. et al. Proteasome involvement in the repair of DNA double-strand breaks. Mol. Cell16, 1027–1034 (2004). ArticleCAS Google Scholar
Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell2, 233–239 (1998). ArticleCAS Google Scholar
Klenk, C., Humrich, J., Quitterer, U. & Lohse, M. J. SUMO-1 controls the protein stability and the biological function of phosducin. J. Biol. Chem.281, 8357–8364 (2006). ArticleCAS Google Scholar
Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature436, 428–433 (2005). ArticleCAS Google Scholar
Muller, S. et al. c-Jun and p53 activity is modulated by SUMO-1 modification. J. Biol. Chem.275, 13321–13329 (2000). ArticleCAS Google Scholar
Bartke, T., Pohl, C., Pyrowolakis, G. & Jentsch, S. Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol. Cell14, 801–811 (2004). ArticleCAS Google Scholar