CUL4–DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation (original) (raw)
References
Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin–RING ubiquitin ligases. Nature Rev. Mol. Cell Biol.6, 9–20 (2005). ArticleCAS Google Scholar
Zhong, W., Feng, H., Santiago, F. E. & Kipreos, E. T. CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature423, 885–889 (2003). ArticleCAS Google Scholar
Higa, L. A., Mihaylov, I. S., Banks, D. P., Zheng, J. & Zhang, H. Radiation-mediated proteolysis of CDT1 by CUL4–ROC1 and CSN complexes constitutes a new checkpoint. Nature Cell Biol.5, 1008–1015 (2003). ArticleCAS Google Scholar
Higa, L. A. et al. Involvement of CUL4 Ubiquitin E3 ligases in Regulating CDK Inhibitors Dacapo/p27(Kip1) and Cyclin E Degradation. Cell Cycle5, 71–77 (2006). ArticleCAS Google Scholar
Sims, R. J., 3rd, Nishioka, K. & Reinberg, D. Histone lysine methylation: a signature for chromatin function. Trends Genet.19, 629–639 (2003). ArticleCAS Google Scholar
Craig, J. M. Heterochromatin — many flavours, common themes. Bioessays27, 17–28 (2005). ArticleCAS Google Scholar
Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell121, 859–872 (2005). ArticleCAS Google Scholar
Higa, L. A. et al. L2DTL/CDT2 Interacts with the CUL4/DDB1 Complex and PCNA and Regulates CDT1 Proteolysis in Response to DNA Damage. Cell Cycle5, 1675–1680 (2006). ArticleCAS Google Scholar
Liu, C. et al. Transactivation of Schizosaccharomyces pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ubiquitin ligase. EMBO J.24, 3940–3951 (2005). ArticleCASPubMed Google Scholar
Hu, J., McCall, C. M., Ohta, T. & Xiong, Y. Targeted ubiquitination of CDT1 by the DDB1-CUL4A–ROC1 ligase in response to DNA damage. Nature Cell Biol.6, 1003–1009 (2004). ArticleCAS Google Scholar
Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell113, 357–367 (2003). ArticleCAS Google Scholar
Groisman, R. et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev.20, 1429–1434 (2006). ArticleCASPubMed Google Scholar
Wang, Q. E., Zhu, Q., Wani, G., Chen, J. & Wani, A. A. UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2. Carcinogenesis25, 1033–1043 (2004). ArticleCAS Google Scholar
Smith, T. F., Gaitatzes, C., Saxena, K. & Neer, E. J. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci.24, 181–185 (1999). ArticleCASPubMed Google Scholar
Neer, E. J., Schmidt, C. J., Nambudripad, R. & Smith, T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature371, 297–300 (1994). ArticleCAS Google Scholar
Shiyanov, P., Nag, A. & Raychaudhuri, P. Cullin 4A associates with the UV-damaged DNA-binding protein DDB. J. Biol. Chem.274, 35309–35312 (1999). ArticleCAS Google Scholar
Couture, J. F., Collazo, E. & Trievel, R. C. Molecular recognition of histone H3 by the WD40 protein WDR5. Nature Struct. Mol. Biol.13, 698–703 (2006). ArticleCAS Google Scholar
Jennings, B. H. et al. Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. Mol. Cell22, 645–655 (2006). ArticleCAS Google Scholar
Denisenko, O., Shnyreva, M., Suzuki, H. & Bomsztyk, K. Point mutations in the WD40 domain of Eed block its interaction with Ezh2. Mol. Cell Biol.18, 5634–5642 (1998). ArticleCASPubMed Google Scholar
Ruthenburg, A. J. et al. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nature Struct. Mol. Biol.13, 704–712 (2006). ArticleCAS Google Scholar
Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell121, 873–885 (2005). ArticleCAS Google Scholar
Scacheri, P. C. et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet.2, e51 (2006). ArticlePubMed Google Scholar
Zou, L., Cortez, D. & Elledge, S. J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev.16, 198–208 (2002). ArticleCASPubMed Google Scholar
Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell111, 185–196 (2002). ArticleCAS Google Scholar
Tie, F., Prasad-Sinha, J., Birve, A., Rasmuson-Lestander, A. & Harte, P. J. A 1-megadalton ESC/E(Z) complex from Drosophila that contains polycomblike and RPD3. Mol. Cell Biol.23, 3352–3362 (2003). ArticleCASPubMed Google Scholar
Cao, R. & Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev.14, 155–164 (2004). ArticleCAS Google Scholar
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298, 1039–1043 (2002). ArticleCASPubMed Google Scholar
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001). ArticleCAS Google Scholar
Li, D. & Roberts, R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol. Life Sci.58, 2085–2097 (2001). ArticleCAS Google Scholar
Jia, S., Kobayashi, R. & Grewal, S. I. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nature Cell Biol.7, 1007–1013 (2005). ArticleCAS Google Scholar
Angers, S. et al. Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery. Nature443, 590–593 (2006). CAS Google Scholar
Jin, J., Arias, E. E., Chen J., Harper, J. W. & Walter, J. C. A family of diverse Cul4–Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol. Cell23, 709–721 (2006). ArticleCAS Google Scholar