Gβγs and the Ras binding domain of p110γ are both important regulators of PI3Kγ signalling in neutrophils (original) (raw)
Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem.70, 535–602 (2001). ArticleCASPubMed Google Scholar
Suire, S. et al. p84, a new Gβγ-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110γ. Curr. Biol.15, 566–570 (2005). ArticleCASPubMed Google Scholar
Voigt, P., Dorner, M. B. & Schaefer, M. Characterization of P87Pikap, a novel regulatory subunit of phosphoinositide 3-kinase γ that is highly expressed in heart and interacts with PDE3B. J. Biol. Chem.231, 9977–9986 (2006). Article Google Scholar
Stephens, L. R. et al. The Gβγ sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell89, 105–114 (1997). ArticleCASPubMed Google Scholar
Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature370, 527–532 (1994). ArticleCASPubMed Google Scholar
Pacold, M. E. et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase γ. Cell103, 931–943 (2000). ArticleCASPubMed Google Scholar
Rodriguez-Viciana, P., Sabatier, C. & McCormick, F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol. Cell Biol.24, 4943–4954 (2004). ArticleCASPubMedPubMed Central Google Scholar
Krugmann, S., Cooper, M. A., Williams, D. H., Hawkins, P. T. & Stephens, L. R. Mechanism of the regulation of type IB phosphoinositide 3OH-kinase by G-protein βγ subunits. Biochem. J.362, 725–731 (2002). ArticleCASPubMedPubMed Central Google Scholar
Krugmann, S., Eguinoa, A., McGregor, A. H., Hawkins, P. T. & Stephens, L. R. Structural analysis of a novel isoform of phosphoinositide 3OH-kinase. Biochem. Soc. Trans.25, S604 (1997). ArticleCASPubMed Google Scholar
Brock, C. et al. Roles of Gβγ in membrane recruitment and activation of p110γ/p101 phosphoinositide 3-kinase γ. J. Cell Biol.160, 89–99 (2003). ArticleCASPubMedPubMed Central Google Scholar
Suire, S., Hawkins, P. & Stephens, L. Activation of phosphoinositide 3-kinase γ by Ras. Curr. Biol.12, 1068–1075 (2002). ArticleCASPubMed Google Scholar
Simon, S. I. & Green, C. E. Molecular mechanics and dynamics of leukocyte recruitment during inflammation. Annu. Rev. Biomed. Eng.7, 151–185 (2005). ArticleCASPubMed Google Scholar
Sheppard, F. R. et al. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J. Leukoc. Biol.78, 1025–1042 (2005). ArticleCASPubMed Google Scholar
Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science287, 1040–1046 (2000). ArticleCASPubMed Google Scholar
Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science287, 1049–1053 (2000). ArticleCASPubMed Google Scholar
Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science287, 1046–1049 (2000). ArticleCASPubMed Google Scholar
Condliffe, A. M. et al. Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood106, 1432–1440 (2005). ArticleCASPubMed Google Scholar
Crackower, M. A. et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell110, 737–749 (2002). ArticleCASPubMed Google Scholar
Hirsch, E. et al. Resistance to thromboembolism in PI3Kγ-deficient mice. FASEB J.15, 2019–2021 (2001). ArticleCASPubMed Google Scholar
Rickert, P., Weiner, O. D., Wang, F., Bourne, H. R. & Servant, G. Leukocytes navigate by compass: roles of PI3Kγ and its lipid products. Trends Cell Biol.10, 466–473 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wymann, M. P. & Marone, R. Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr. Opin. Cell Biol.17, 141–149 (2005). ArticleCASPubMed Google Scholar
Weiner, O. D. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr. Opin. Cell Biol.14, 196–202 (2002). ArticleCASPubMedPubMed Central Google Scholar
Thomas, M. J. et al. Airway inflammation: chemokine-induced neutrophilia and the class I phosphoinositide 3-kinases. Eur. J. Immunol.35, 1283–1291 (2005). ArticleCASPubMed Google Scholar
Sasaki, A. T., Chun, C., Takeda, K. & Firtel, R. A. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J. Cell Biol.167, 505–518 (2004). ArticleCASPubMedPubMed Central Google Scholar
Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell109, 611–623 (2002). ArticleCASPubMed Google Scholar
Coffer, P. J. et al. Comparison of the roles of mitogen-activated protein kinase kinase and phosphatidylinositol 3-kinase signal transduction in neutrophil effector function. Biochem. J.329, 121–130 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zheng, L., Eckerdal, J., Dimitrijevic, I. & Andersson, T. Chemotactic peptide-induced activation of Ras in human neutrophils is associated with inhibition of p120-GAP activity. J. Biol. Chem.272, 23448–23454 (1997). ArticleCASPubMed Google Scholar
Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res.23, 5080–5081 (1995). ArticleCASPubMedPubMed Central Google Scholar
de Rooij, J. & Bos, J. L. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene14, 623–625 (1997). ArticleCASPubMed Google Scholar