Physicochemical modelling of cell signalling pathways (original) (raw)
References
Nurse, P. A long twentieth century of the cell cycle and beyond. Cell100, 71–78 (2000). ArticleCAS Google Scholar
Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. A. & Palsson, B. O. Metabolic pathways in the post-genome era. Trends Biochem. Sci.28, 250–258 (2003). ArticleCAS Google Scholar
Reed, J. L., Vo, T. D., Schilling, C. H. & Palsson, B. O. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol.4, R54 (2003). Article Google Scholar
Bhalla, U. S., Ram, P. T. & Iyengar, R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science297, 1018–1023 (2002). ArticleCAS Google Scholar
Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB–NF-κB signaling module: temporal control and selective gene activation. Science298, 1241–1245 (2002). ArticleCAS Google Scholar
Huang, C. Y. & Ferrell, J. E., Jr. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA93, 10078–10083 (1996). ArticleCAS Google Scholar
Markevich, N. I., Hoek, J. B. & Kholodenko, B. N. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol.164, 353–359 (2004). ArticleCAS Google Scholar
Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnol.20, 370–375 (2002). Article Google Scholar
Oda, K., Matsuoka, Y., Funahashi, A. & Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol.1, 0010 (2005). Article Google Scholar
Gardiner, C. W. Handbook of Stochastic Processes (Springer, New York, 2005). Google Scholar
Danuser, G. & Waterman-Storer, C. M. Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct.35, 361–387 (2006). ArticleCAS Google Scholar
Mallavarapu, A. & Mitchison, T. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol.146, 1097–1106 (1999). ArticleCAS Google Scholar
Odde, D. J. & Buettner, H. M. Time series characterization of simulated microtubule dynamics in the nerve growth cone. Ann. Biomed. Eng.23, 268–286 (1995). ArticleCAS Google Scholar
Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science305, 1782–1786 (2004). ArticleCAS Google Scholar
McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA94, 814–819 (1997). ArticleCAS Google Scholar
Paulsson, J. Summing up the noise in gene networks. Nature427, 415–418 (2004). ArticleCAS Google Scholar
Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Kholodenko, B. N. & Gilles, E. D. A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics7, 34 (2006). Article Google Scholar
Blinov, M. L., Faeder, J. R., Goldstein, B. & Hlavacek, W. S. A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. Biosystems83, 136–151 (2006). ArticleCAS Google Scholar
Hlavacek, W. S. et al. Rules for modeling signal-transduction systems. Sci. STKE re6 (2006).
Tolle, D. P. & Le Novere, N. Particle-Based Stochastic Simulation in Systems Biology. Current Bioinformatics 1, 1–6 (2006).
Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature403, 339–342 (2000). ArticleCAS Google Scholar
Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol.15, 221–231 (2003). ArticleCAS Google Scholar
von Dassow, G., Meir, E., Munro, E. M. & Odell, G. M. The segment polarity network is a robust developmental module. Nature406, 188–192 (2000). ArticleCAS Google Scholar
Conrad, E. D. & Tyson, J. J. in System Modeling in Cellular Biology (eds. Szallasi, Z., Stelling, J. & Periwal, V.) 97–123 (MIT Press, Cambridge, 2006). Book Google Scholar
Farrow, L. A. & Edelson, D. The steady-state assumption: fact or fiction? Int. J. Chem. Kin.1, 309–322 (1974). Google Scholar
Flach, E. H. & Schnell, S. Use and abuse of the quasi-steady-state approximation. IEE Proc. Syst. Biol.153, 187–191 (2006). ArticleCAS Google Scholar
Segel, L. A. On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol.50, 579–593 (1988). ArticleCAS Google Scholar
Balci, O. in Proceedings of the 29th conference on Winter simulation 135–141 (ACH Press, Atlanta, 1997). Book Google Scholar
Sargent, R. G. in 2005 Proceedings of the Winter Simulation Conference 14 (ACH Press, New York, 2005). Google Scholar
van Riel, N. A. W. & Sontag, E. D. Parametric estimation in models combining signal transduction and metabolic pathways: the dependent input approach. IEE Proc.Syst. Biol.153, 263–274 (2006). ArticleCAS Google Scholar
Geva-Zatorsky, N. et al. Oscillations and variability in the p53 system. Mol. Syst. Biol.2, 0033 (2006). Article Google Scholar
Aldridge, B. B., Haller, G., Sorger, P. K. & Lauffenburger, D. A. Direct Lyaponov exponent analysis enables parametric study of transient signalling governing cell behaviour. IEE Proc. Syst. Biol.153, (2006). Google Scholar
Bentele, M. et al. Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J. Cell Biol.166, 839–851 (2004). ArticleCAS Google Scholar
Frey, D. & Li, X. in Engineering Systems 2004 Symposium (MIT Engineering Systems Division, Cambridge, 2004). Google Scholar
Wiggins, S. in Introduction to Applied Nonlinear Dynamical Systems and Chaos (eds. Marsden, J. E., Sirovich, L. & Antman, S. S.) 356–xxx (Springer-Verlag, New York, 2003). Google Scholar
Hoppenstaedt, F. C. Analysis and Simulation of Chaotic Systems (Springer-Verlag, New York, 2000). Google Scholar
Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics19, 524–531 (2003). ArticleCAS Google Scholar
Merks, R. M. H. & Glazier, J. A. A cell-centered approach to developmental biology. Physica A352, 113–130 (2005). ArticleCAS Google Scholar
Kitano, H., Funahashi, A., Matsuoka, Y. & Oda, K. Using process diagrams for the graphical representation of biological networks. Nature Biotechnol.23, 961–966 (2005). ArticleCAS Google Scholar
Moles, C. G., Mendes, P. & Banga, J. R. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res.13, 2467–2474 (2003). ArticleCAS Google Scholar
Alves, R., Antunes, F. & Salvador, A. Tools for kinetic modeling of biochemical networks. Nature Biotechnol.24, 667–672 (2006). ArticleCAS Google Scholar
Le Novere, N. et al. Minimum information requested in the annotation of biochemical models (MIRIAM). Nature Biotechnol23, 1509–1515 (2005). ArticleCAS Google Scholar
Gillespie, D. T. A Rigorous Derivation of the Chemical Master Equation. Physica A188, 404–425 (1992). ArticleCAS Google Scholar
Roussel, M. R. & Zhu, R. Reducing a chemical master equation by invariant manifold methods. J. Chem. Phys.121, 8716–8730 (2004). ArticleCAS Google Scholar