Physicochemical modelling of cell signalling pathways (original) (raw)

References

  1. Nurse, P. A long twentieth century of the cell cycle and beyond. Cell 100, 71–78 (2000).
    Article CAS Google Scholar
  2. Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. A. & Palsson, B. O. Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28, 250–258 (2003).
    Article CAS Google Scholar
  3. Reed, J. L., Vo, T. D., Schilling, C. H. & Palsson, B. O. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4, R54 (2003).
    Article Google Scholar
  4. Bhalla, U. S., Ram, P. T. & Iyengar, R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297, 1018–1023 (2002).
    Article CAS Google Scholar
  5. Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB–NF-κB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).
    Article CAS Google Scholar
  6. Huang, C. Y. & Ferrell, J. E., Jr. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA 93, 10078–10083 (1996).
    Article CAS Google Scholar
  7. Markevich, N. I., Hoek, J. B. & Kholodenko, B. N. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol. 164, 353–359 (2004).
    Article CAS Google Scholar
  8. Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnol. 20, 370–375 (2002).
    Article Google Scholar
  9. Oda, K., Matsuoka, Y., Funahashi, A. & Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 1, 0010 (2005).
    Article Google Scholar
  10. Gardiner, C. W. Handbook of Stochastic Processes (Springer, New York, 2005).
    Google Scholar
  11. Danuser, G. & Waterman-Storer, C. M. Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 361–387 (2006).
    Article CAS Google Scholar
  12. Mallavarapu, A. & Mitchison, T. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol. 146, 1097–1106 (1999).
    Article CAS Google Scholar
  13. Odde, D. J. & Buettner, H. M. Time series characterization of simulated microtubule dynamics in the nerve growth cone. Ann. Biomed. Eng. 23, 268–286 (1995).
    Article CAS Google Scholar
  14. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).
    Article CAS Google Scholar
  15. McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA 94, 814–819 (1997).
    Article CAS Google Scholar
  16. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).
    Article CAS Google Scholar
  17. Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Kholodenko, B. N. & Gilles, E. D. A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics 7, 34 (2006).
    Article Google Scholar
  18. Blinov, M. L., Faeder, J. R., Goldstein, B. & Hlavacek, W. S. A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. Biosystems 83, 136–151 (2006).
    Article CAS Google Scholar
  19. Hlavacek, W. S. et al. Rules for modeling signal-transduction systems. Sci. STKE re6 (2006).
  20. Tolle, D. P. & Le Novere, N. Particle-Based Stochastic Simulation in Systems Biology. Current Bioinformatics 1, 1–6 (2006).
  21. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).
    Article CAS Google Scholar
  22. Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).
    Article CAS Google Scholar
  23. von Dassow, G., Meir, E., Munro, E. M. & Odell, G. M. The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000).
    Article CAS Google Scholar
  24. Conrad, E. D. & Tyson, J. J. in System Modeling in Cellular Biology (eds. Szallasi, Z., Stelling, J. & Periwal, V.) 97–123 (MIT Press, Cambridge, 2006).
    Book Google Scholar
  25. Farrow, L. A. & Edelson, D. The steady-state assumption: fact or fiction? Int. J. Chem. Kin. 1, 309–322 (1974).
    Google Scholar
  26. Flach, E. H. & Schnell, S. Use and abuse of the quasi-steady-state approximation. IEE Proc. Syst. Biol. 153, 187–191 (2006).
    Article CAS Google Scholar
  27. Segel, L. A. On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–593 (1988).
    Article CAS Google Scholar
  28. Balci, O. in Proceedings of the 29th conference on Winter simulation 135–141 (ACH Press, Atlanta, 1997).
    Book Google Scholar
  29. Sargent, R. G. in 2005 Proceedings of the Winter Simulation Conference 14 (ACH Press, New York, 2005).
    Google Scholar
  30. van Riel, N. A. W. & Sontag, E. D. Parametric estimation in models combining signal transduction and metabolic pathways: the dependent input approach. IEE Proc.Syst. Biol. 153, 263–274 (2006).
    Article CAS Google Scholar
  31. Geva-Zatorsky, N. et al. Oscillations and variability in the p53 system. Mol. Syst. Biol. 2, 0033 (2006).
    Article Google Scholar
  32. Aldridge, B. B., Haller, G., Sorger, P. K. & Lauffenburger, D. A. Direct Lyaponov exponent analysis enables parametric study of transient signalling governing cell behaviour. IEE Proc. Syst. Biol. 153, (2006).
    Google Scholar
  33. Bentele, M. et al. Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J. Cell Biol. 166, 839–851 (2004).
    Article CAS Google Scholar
  34. Frey, D. & Li, X. in Engineering Systems 2004 Symposium (MIT Engineering Systems Division, Cambridge, 2004).
    Google Scholar
  35. Wiggins, S. in Introduction to Applied Nonlinear Dynamical Systems and Chaos (eds. Marsden, J. E., Sirovich, L. & Antman, S. S.) 356–xxx (Springer-Verlag, New York, 2003).
    Google Scholar
  36. Hoppenstaedt, F. C. Analysis and Simulation of Chaotic Systems (Springer-Verlag, New York, 2000).
    Google Scholar
  37. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).
    Article CAS Google Scholar
  38. Merks, R. M. H. & Glazier, J. A. A cell-centered approach to developmental biology. Physica A 352, 113–130 (2005).
    Article CAS Google Scholar
  39. Dyson, F. A meeting with Enrico Fermi. Nature 427, 297 (2004).
    Article CAS Google Scholar
  40. Kitano, H., Funahashi, A., Matsuoka, Y. & Oda, K. Using process diagrams for the graphical representation of biological networks. Nature Biotechnol. 23, 961–966 (2005).
    Article CAS Google Scholar
  41. Moles, C. G., Mendes, P. & Banga, J. R. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 2467–2474 (2003).
    Article CAS Google Scholar
  42. Alves, R., Antunes, F. & Salvador, A. Tools for kinetic modeling of biochemical networks. Nature Biotechnol. 24, 667–672 (2006).
    Article CAS Google Scholar
  43. Le Novere, N. et al. Minimum information requested in the annotation of biochemical models (MIRIAM). Nature Biotechnol 23, 1509–1515 (2005).
    Article CAS Google Scholar
  44. Gillespie, D. T. A Rigorous Derivation of the Chemical Master Equation. Physica A 188, 404–425 (1992).
    Article CAS Google Scholar
  45. Roussel, M. R. & Zhu, R. Reducing a chemical master equation by invariant manifold methods. J. Chem. Phys. 121, 8716–8730 (2004).
    Article CAS Google Scholar

Download references