Cdk1 coordinates cell-surface growth with the cell cycle (original) (raw)
Jorgensen, P. & Tyers, M. How cells coordinate growth and division. Curr. Biol.14, R1014–R1027 (2004). ArticleCAS Google Scholar
Johnston, G. C., Pringle, J. R. & Hartwell, L. H. Coordination of growth with cell division in the yeast Saccharomyces cervisiae. Exp. Cell. Res.105, 79–98 (1977). ArticleCAS Google Scholar
Kipreos, E. T., Lander, L. E., Wing, J. P., He, W. W. & Hedgecock, E. M. cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell85, 829–839 (1996). ArticleCAS Google Scholar
Weigmann, K., Cohen, S. M. & Lehner, C. F. Cell cycle progression, growth and patterning in imaginal discs despite inhibition of cell division after inactivation of Drosophila Cdc2 kinase. Development124, 3555–3563 (1997). CASPubMed Google Scholar
Culotti, J. & Hartwell, L. H. Genetic control of the cell division cycle in yeast. 3. Seven genes controlling nuclear division. Exp. Cell Res.67, 389–401 (1971). ArticleCAS Google Scholar
Cross, F. R. Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating-pheromone signalling pathway. Mol. Cell Biol.10, 6482–6490 (1990). ArticleCAS Google Scholar
Lew, D. J. & Reed, S. I. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol.120, 1305–1320 (1993). ArticleCAS Google Scholar
Barral, Y., Jentsch, S. & Mann, C. G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev.9, 399–409 (1995). ArticleCAS Google Scholar
Butty, A. C. et al. A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO J.21, 1565–1576 (2002). ArticleCAS Google Scholar
Gulli, M. P. et al. Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol. Cell6, 1155–1167 (2000). ArticleCAS Google Scholar
Moffat, J. & Andrews, B. Late-G1 cyclin–CDK activity is essential for control of cell morphogenesis in budding yeast. Nature Cell Biol.6, 59–66 (2004). ArticleCAS Google Scholar
Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature407, 395–401 (2000). ArticleCAS Google Scholar
Booher, R. N., Deshaies, R. J. & Kirschner, M. W. Properties of Saccharomyces cerevisiae wee1 and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. EMBO J.12, 3417–3426 (1993). ArticleCAS Google Scholar
McMillan, J. N., Theesfeld, C. L., Harrison, J. C., Bardes, E. S. & Lew, D. J. Determinants of Swe1p degradation in Saccharomyces cerevisiae. Mol. Biol. Cell.13, 3560–3575 (2002). ArticleCAS Google Scholar
Lanker, S., Valdivieso, M. H. & Wittenberg, C. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science271, 1597–1601 (1996). ArticleCAS Google Scholar
Deshaies, R. J., Chau, V. & Kirschner, M. Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J.14, 303–312 (1995). ArticleCAS Google Scholar
Schneider, B. L. et al. Yeast G1 cyclins are unstable in G1 phase. Nature395, 86–89 (1998). ArticleCAS Google Scholar
Willems, A. R. et al. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell86, 453–463 (1996). ArticleCAS Google Scholar
Ubersax, J. A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature425, 859–864 (2003). ArticleCAS Google Scholar
Hartwell, L. Genetic control of the cell cycle in yeast. Genes controlling bud emergence and cytokinesis. Exp. Cell Res.69, 265–276 (1971). ArticleCAS Google Scholar
Pruyne, D., Legesse-Miller, A., Gao, L., Dong, Y. & Bretscher, A. Mechanisms of polarized growth and organelle segregation in yeast. Annu. Rev. Cell Dev. Biol.20, 559–591 (2004). ArticleCAS Google Scholar
Valdez-Taubas, J. & Pelham, H. R. Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr. Biol.13, 1636–1640 (2003). ArticleCAS Google Scholar
Finger, F. P., Hughes, T. E. & Novick, P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell92, 559–571 (1998). ArticleCAS Google Scholar
Adams, A. E., Johnson, D. I., Longnecker, R. M., Sloat, B. F. & Pringle, J. R. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol.111, 131–142 (1990). ArticleCAS Google Scholar
Adamo, J. E. et al. Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud. J. Cell Biol.155, 581–592 (2001). ArticleCAS Google Scholar
Zajac, A., Sun, X., Zhang, J. & Guo, W. Cyclical regulation of the exocyst and cell polarity determinants for polarized cell growth. Mol. Biol. Cell16, 1500–1512 (2005). ArticleCAS Google Scholar
Zhang, X. et al. Cdc42 interacts with the exocyst and regulates polarized secretion. J. Biol. Chem.276, 46745–46750 (2001). ArticleCAS Google Scholar
Sloat, B. F. & Pringle, J. R. A mutant of yeast defective in cellular morphogenesis. Science200, 1171–1173 (1978). ArticleCAS Google Scholar
Sloat, B. F., Adams, A. & Pringle, J. R. Roles of the CDC24 gene product in cellular morphogenesis during the Saccharomyces cerevisiae cell cycle. J. Cell Biol.89, 395–405 (1981). ArticleCAS Google Scholar
Peterson, J. et al. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast. J. Cell Biol.127, 1395–1406 (1994). ArticleCAS Google Scholar
Bose, I. et al. Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p. J. Biol. Chem.276, 7176–7186 (2001). ArticleCAS Google Scholar
Smith, G. R., Givan, S. A., Cullen, P. & Sprague, G. F., Jr. GTPase-activating proteins for Cdc42. Eukaryot. Cell1, 469–480 (2002). ArticleCAS Google Scholar
Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell125, 85–98 (2006). ArticleCAS Google Scholar
Bender, L. et al. Associations among PH and SH3 domain-containing proteins and Rho-type GTPases in yeast. J. Cell Biol.133, 879–894 (1996). ArticleCAS Google Scholar
Matsui, Y., Matsui, R., Akada, R. & Toh-e, A. Yeast src homology region 3 domain-binding proteins involved in bud formation. J. Cell Biol.133, 865–878 (1996). ArticleCAS Google Scholar
Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol.137, 399–416 (1997). ArticleCAS Google Scholar
Loog, M. & Morgan, D. O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature434, 104–108 (2005). ArticleCAS Google Scholar
Peeper, D. S. et al. A- and B-type cyclins differentially modulate substrate specificity ofcyclin-cdk complexes. EMBO J.12, 1947–1954 (1993). ArticleCAS Google Scholar
Archambault, V. et al. Targeted proteomic study of the cyclin-Cdk module. Mol. Cell14, 699–711 (2004). ArticleCAS Google Scholar
Harvey, S. L., Charlet, A., Haas, W., Gygi, S. P. & Kellogg, D. R. Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell122, 407–420 (2005). ArticleCAS Google Scholar
Mimura, S., Seki, T., Tanaka, S. & Diffley, J. F. Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control. Nature431, 1118–1123 (2004). ArticleCAS Google Scholar
Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast14, 953–961 (1998). ArticleCAS Google Scholar
Mortensen, E. M., McDonald, H., Yates, J., 3rd & Kellogg, D. R. Cell cycle-dependent assembly of a Gin4-septin complex. Mol. Biol. Cell13, 2091–2105 (2002). ArticleCAS Google Scholar
Kellogg, D. R. & Alberts, B. M. Purification of a multiprotein complex containing centrosomal proteins from the Drosophila embryo by chromatography with low-affinity polyclonal antibodies. Mol. Biol. Cell3, 1–11 (1992). ArticleCAS Google Scholar
Adamo, J. E., Rossi, G. & Brennwald, P. The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol. Biol. Cell10, 4121–4133 (1999). ArticleCAS Google Scholar
Washburn, M. P., Wolters, D. & Yates, J. R., 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol19, 242–247 (2001). ArticleCAS Google Scholar
Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom.5, 976–989 (1994). ArticleCAS Google Scholar
Sadygov, R. G. et al. Code developments to improve the efficiency of automated MS/MS spectra interpretation. J. Proteome Res.1, 211–215 (2002). ArticleCAS Google Scholar
Gygi, M. P., Licklider, L. J., Peng, J. & Gygi, S. P. Proteins and Proteomics: A Laboratory Manual (Cold Spring Harbor, NY, 2004). Google Scholar
Beausoleil, S. A., Villen, J., Gerber, S. A., Rush, J. & Gygi, S. P. Nature Biotechnol24, 1285–1292 (2006). ArticleCAS Google Scholar