The ubiquitin-specific protease USP28 is required for MYC stability (original) (raw)
Oster, S. K., Ho, C. S., Soucie, E. L. & Penn, L. Z. The myc oncogene: MarvelouslY Complex. Adv. Cancer Res.84, 81–154 (2002). ArticleCAS Google Scholar
Salghetti, S. E., Kim, S. Y. & Tansey, W. P. Destruction of MYC by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize MYC. EMBO J.18, 717–726 (1999). ArticleCAS Google Scholar
Bahram, F., von der Lehr, N., Cetinkaya, C. & Larsson, L. G. c-MYC hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood95, 2104–2110 (2000). CASPubMed Google Scholar
Welcker, M. et al. The FBW7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-MYC protein degradation. Proc. Natl Acad. Sci. USA101, 9085–9090 (2004). ArticleCAS Google Scholar
Yada, M. et al. Phosphorylation-dependent degradation of c-MYC is mediated by the F-box protein FBW7. EMBO J.23, 2116–2125 (2004). ArticleCAS Google Scholar
Yeh, E. et al. A signalling pathway controlling c-MYC degradation that impacts oncogenic transformation of human cells. Nature Cell Biol.6, 308–318 (2004). ArticleCAS Google Scholar
Gregory, M. A. & Hann, S. R. c-MYC proteolysis by the ubiquitin-proteasome pathway: stabilization of c-MYC in Burkitt's lymphoma cells. Mol. Cell Biol.20, 2423–2435 (2000). ArticleCAS Google Scholar
Malempati, S. et al. Aberrant stabilization of c-MYC protein in some lymphoblastic leukemias. Leukemia20, 1572–1581 (2006). ArticleCAS Google Scholar
Kim, S. Y., Herbst, A., Tworkowski, K. A., Salghetti, S. E. & Tansey, W. P. Skp2 regulates myc protein stability and activity. Mol. Cell11, 1177–1188 (2003). ArticleCAS Google Scholar
von der Lehr, N. et al. The F-box protein Skp2 participates in c-MYC proteosomal degradation and acts as a cofactor for c-MYC-regulated transcription. Mol. Cell11, 1189–1200 (2003). ArticleCAS Google Scholar
Gross-Mesilaty, S. et al. Basal and human papillomavirus E6 oncoprotein-induced degradation of MYC proteins by the ubiquitin pathway. Proc. Natl Acad. Sci. USA95, 8058–8063 (1998). ArticleCAS Google Scholar
Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell123, 773–786 (2005). ArticleCAS Google Scholar
Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell69, 119–128 (1992). ArticleCAS Google Scholar
Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res.23, 1686–1690 (1995). ArticleCAS Google Scholar
Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature428, 431–437 (2004). ArticleCAS Google Scholar
Brummelkamp, T. R. et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nature Chem. Biol.2, 202–206 (2006). ArticleCAS Google Scholar
Amati, B., Littlewood, T. D., Evan, G. I. & Land, H. The c-MYC protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J.13, 5083–5087 (1993). Article Google Scholar
Leone, G. et al. MYC requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell8, 105–113 (2001). ArticleCAS Google Scholar
Dansen, T. B., Whitfield, J., Rostker, F., Brown-Swigart, L. & Evan, G. I. Specific requirement for Bax, not Bak, in MYC-induced apoptosis and tumor suppression in vivo. J. Biol. Chem.281, 10890–10895 (2006). ArticleCAS Google Scholar
Rothermund, K. et al. c-MYC-independent restoration of multiple phenotypes by two c-MYC target genes with overlapping functions. Cancer Res.65, 2097–2107 (2005). ArticleCAS Google Scholar
Benitah, S. A., Frye, M., Glogauer, M. & Watt, F. M. Stem cell depletion through epidermal deletion of Rac1. Science309, 933–935 (2005). Article Google Scholar
Park, Y. B. et al. Alterations in the INK4a/ARF locus and their effects on the growth of human osteosarcoma cell lines. Cancer Genet. Cytogenet.133, 105–111 (2002). ArticleCAS Google Scholar
Zhang, D., Zaugg, K., Mak, T. W. & Elledge, S. J. A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell126, 529–542 (2006). ArticleCAS Google Scholar
Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFBW7 ubiquitin ligase. Science294, 173–177 (2001). ArticleCAS Google Scholar
Strohmaier, H. et al. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature413, 316–322 (2001). ArticleCAS Google Scholar
Bhattacharya, S. et al. SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene22, 2443–2451 (2003). ArticleCAS Google Scholar
Sutterlüty, H. et al. e45skp2 promotes p27kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol.1, 207–214 (1999). Article Google Scholar
Sorensen, C. S. et al. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex–Cdh1 and cyclin A–Cdk2 during cell cycle progression. Mol. Cell Biol.21, 3692–3703 (2001). ArticleCAS Google Scholar
Bashir, T., Dorrello, N. V., Amador, V., Guardavaccaro, D. & Pagano, M. Control of the SCF(Skp2–Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature428, 190–193 (2004). ArticleCAS Google Scholar
Welcker, M. et al. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol. Cell12, 381–392 (2003). ArticleCAS Google Scholar
Welcker, M., Orian, A., Grim, J. A., Eisenman, R. N. & Clurman, B. E. A Nucleolar isoform of the FBW7 ubiquitin ligase regulates c-MYC and cell size. Curr. Biol.14, 1852–1857 (2004). ArticleCAS Google Scholar
Kee, Y., Lyon, N. & Huibregtse, J. M. The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J.24, 2414–2424 (2005). ArticleCAS Google Scholar
Li, M., Brooks, C. L., Kon, N. & Gu, W. A dynamic role of HAUSP in the p53–Mdm2 pathway. Mol. Cell13, 879–886 (2004). ArticleCAS Google Scholar
van Drogen, F. et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol. Cell23, 37–48 (2006). ArticleCAS Google Scholar
Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-MYC. Nature421, 290–294 (2003). ArticleCAS Google Scholar
Grandori, C. et al. c-MYC binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol.7, 311–318 (2005). ArticleCAS Google Scholar
Sansom, O. J. et al. MYC deletion rescues Apc deficiency in the small intestine. Nature446, 676–679 (2007). ArticleCAS Google Scholar
van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell111, 241–250 (2002). ArticleCAS Google Scholar
Oskarsson, T. & Trumpp, A. The MYC trilogy: lord of RNA polymerases. Nature Cell Biol.7, 215–217 (2005). ArticleCAS Google Scholar
Arabi, A., Rustum, C., Hallberg, E. & Wright, A. P. Accumulation of c-MYC and proteasomes at the nucleoli of cells containing elevated c-MYC protein levels. J. Cell Sci.116, 1707–1717 (2003). ArticleCAS Google Scholar
Li, Z., Wang, D., Messing, E. M. & Wu, G. VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1α. EMBO Rep.6, 373–378 (2005). ArticleCAS Google Scholar
Herbst, A. et al. A conserved element in MYC that negatively regulates its proapoptotic activity. EMBO Rep.6, 177–183 (2005). ArticleCAS Google Scholar
Hemann, M. T. et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature436, 807–811 (2005). ArticleCAS Google Scholar
Benassi, B. et al. c-MYC phosphorylation is required for cellular response to oxidative stress. Mol. Cell21, 509–519 (2006). ArticleCAS Google Scholar
Ngo, V. N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature441, 106–110 (2006). ArticleCAS Google Scholar
Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature431, 1112–1117 (2004). ArticleCAS Google Scholar
Leung-Toung, R. et al. Thiol proteases: inhibitors and potential therapeutic targets. Curr. Med. Chem.13, 547–581 (2006). ArticleCAS Google Scholar
Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell2, 243–247 (2002). ArticleCAS Google Scholar
Adhikary, S. et al. The ubiquitin ligase HectH9 regulates transcriptional activation by MYC and is essential for tumor cell proliferation. Cell123, 409–421 (2005). ArticleCAS Google Scholar