The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus (original) (raw)
References
Leger-Silvestre, I., Trumtel, S., Noaillac-Depeyre, J. & Gas, N. Functional compartmentalization of the nucleus in the budding yeast Saccharomyces cerevisiae. Chromosoma108, 103–113 (1999). ArticleCAS Google Scholar
Michel, A. H., Kornmann, B., Dubrana, K. & Shore, D. Spontaneous rDNA copy number variation modulates Sir2 levels and epigenetic gene silencing. Genes Dev.19, 1199–1210 (2005). ArticleCAS Google Scholar
Park, P. U., Defossez, P. A. & Guarente, L. Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. Mol. Cell. Biol.19, 3848–3856 (1999). ArticleCAS Google Scholar
Kobayashi, T., Heck, D. J., Nomura, M. & Horiuchi, T. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev.12, 3821–3830 (1998). ArticleCAS Google Scholar
Gangloff, S., Zou, H. & Rothstein, R. Gene conversion plays the major role in controlling the stability of large tandem repeats in yeast. EMBO J.15, 1715–1725 (1996). ArticleCAS Google Scholar
Warner, J. R., Vilardell, J. & Sohn, J. H. Economics of ribosome biosynthesis. Cold Spring Harb. Symp. Quant. Biol.66, 567–574 (2001). ArticleCAS Google Scholar
Liu, Y., Li, M., Lee, E. Y. & Maizels, N. Localization and dynamic relocalization of mammalian Rad52 during the cell cycle and in response to DNA damage. Curr. Biol.9, 975–978 (1999). ArticleCAS Google Scholar
Lisby, M., Rothstein, R. & Mortensen, U. H. Rad52 forms DNA repair and recombination centers during S phase. Proc. Natl Acad. Sci. USA98, 8276–8282 (2001). ArticleCAS Google Scholar
Schimmang, T., Tollervey, D., Kern, H., Frank, R. & Hurt, E. C. A yeast nucleolar protein related to mammalian fibrillarin is associated with small nucleolar RNA and is essential for viability. EMBO J.8, 4015–4024 (1989). ArticleCAS Google Scholar
Lisby, M., Mortensen, U. H. & Rothstein, R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nature Cell Biol.5, 572–577 (2003). ArticleCAS Google Scholar
Lisby, M., Barlow, J. H., Burgess, R. C. & Rothstein, R. Choreography of the DNA damage response; spatiotemporal relationships among checkpoint and repair proteins. Cell118, 699–713 (2004). ArticleCAS Google Scholar
de Jager, M. et al. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol. Cell8, 1129–1135 (2001). ArticleCAS Google Scholar
Krogh, B. & Symington, L. Recombination proteins in yeast. Annu. Rev. Genet.38, 233–271 (2004). ArticleCAS Google Scholar
Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science300, 1542–1548 (2003). ArticleCAS Google Scholar
Torres-Rosell, J. et al. Anaphase onset before complete DNA replication with intact checkpoint responses. Science315, 1411–1415 (2007). ArticleCAS Google Scholar
Fujioka, Y., Kimata, Y., Nomaguchi, K., Watanabe, K. & Kohno, K. Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5–SMC6 complex involved in DNA repair. J. Biol. Chem.277, 21585–21591 (2002). ArticleCAS Google Scholar
Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA102, 4777–4782 (2005). ArticleCAS Google Scholar
Losada, A. & Hirano, T. Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev.19, 1269–1287 (2005). ArticleCAS Google Scholar
Aragon, L. Sumoylation: a new wrestler in the DNA repair ring. Proc. Natl Acad. Sci. USA102, 4661–4662 (2005). ArticleCAS Google Scholar
Torres-Rosell, J. et al. SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nature Cell Biol.7, 412–419 (2005). ArticleCAS Google Scholar
Kobayashi, T., Horiuchi, T., Tongaonkar, P., Vu, L. & Nomura, M. SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell117, 441–453 (2004). ArticleCAS Google Scholar
Ivessa, A. S., Zhou, J. Q. & Zakian, V. A. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell100, 479–489 (2000). ArticleCAS Google Scholar
Eladad, S. et al. Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum. Mol. Genet.14, 1351–1365 (2005). ArticleCAS Google Scholar
Shen, T. H., Lin, H. K., Scaglioni, P. P., Yung, T. M. & Pandolfi, P. P. The mechanisms of PML-nuclear body formation. Mol. Cell24, 331–339 (2006). ArticleCAS Google Scholar
Lin, D. Y. et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell24, 341–354 (2006). ArticleCAS Google Scholar
Sacher, M., Pfander, B., Hoege, C. & Jentsch, S. Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nature Cell Biol.8, 1284–1290 (2006). ArticleCAS Google Scholar
De Piccoli, G. et al. Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nature Cell Biol.8, 1032–1034 (2006). ArticleCAS Google Scholar
Betts Lindroos, H. et al. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol. Cell22, 755–767 (2006). Article Google Scholar
Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature423, 309–312 (2003). ArticleCAS Google Scholar
Torres, J. Z., Schnakenberg, S. L. & Zakian, V. A. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol. Cell. Biol.24, 3198–3212 (2004). ArticleCAS Google Scholar
Hays, S. L., Firmenich, A. A. & Berg, P. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl Acad. Sci. USA92, 6925–6929 (1995). ArticleCAS Google Scholar
Davis, A. P. & Symington, L. S. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics159, 515–525 (2001). CASPubMedPubMed Central Google Scholar
Ho, J. C., Warr, N. J., Shimizu, H. & Watts, F. Z. SUMO modification of Rad22, the Schizosaccharomyces pombe homologue of the recombination protein Rad52. Nucleic Acids Res.29, 4179–4186 (2001). ArticleCAS Google Scholar
Reid, R., Lisby, M. & Rothstein, R. Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymol.350, 258–277 (2002). ArticleCAS Google Scholar
Antúnez de Mayolo, A. et al. Multiple start codons and phosphorylation result in discrete Rad52 protein species. Nucleic Acids Res.34, 2587–2597 (2006). Article Google Scholar
Erdeniz, N., Mortensen, U. H. & Rothstein, R. Cloning-free PCR-based allele replacement methods. Genome Res.7, 1174–1183 (1997). ArticleCAS Google Scholar
Merker, R. J. & Klein, H. L. _hpr1_Δ affects ribosomal DNA recombination and cell life span in Saccharomyces cerevisiae. Mol. Cell. Biol.22, 421–429 (2002). ArticleCAS Google Scholar
Versini, G. et al. The yeast Sgs1 helicase is differentially required for genomic and ribosomal DNA replication. EMBO J.22, 1939–1949 (2003). ArticleCAS Google Scholar
Moore, C. W. et al. DNA damage-inducible and _RAD52_-independent repair of DNA double-strand breaks in Saccharomyces cerevisiae. Genetics154, 1085–1099 (2000). CASPubMedPubMed Central Google Scholar