SCAI acts as a suppressor of cancer cell invasion through the transcriptional control of β1-integrin (original) (raw)
Spiegelman, B. M. & Heinrich, R. Biological control through regulated transcriptional coactivators. Cell119, 157–167 (2004). ArticleCAS Google Scholar
Copeland, J. W. & Treisman, R. The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization. Mol. Biol. Cell13, 4088–4099 (2002). ArticleCAS Google Scholar
Faix, J. & Grosse, R. Staying in shape with formins. Dev. Cell10, 693–706 (2006). ArticleCAS Google Scholar
Grosse, R., Copeland, J. W., Newsome, T P., Way, M. & Treisman, R. A role for VASP in RhoA-Diaphanous signalling to actin dynamics and SRF activity. EMBO J.22, 3050–3061 (2003). ArticleCAS Google Scholar
Cen, B. et al. Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Mol. Cell. Biol.23, 6597–6608 (2003). ArticleCAS Google Scholar
Miralles, F., Posern, G., Zaromytidou, A. I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell113, 329–342 (2003). ArticleCAS Google Scholar
Vartiainen, M. K., Guettler, S., Larijani, B. & Treisman, R. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science316, 1749–1752 (2007). ArticleCAS Google Scholar
Ma, Z. et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nature Genet.28, 220–221 (2001). ArticleCAS Google Scholar
Mercher, T. et al. Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc. Natl Acad. Sci. USA98, 5776–5779 (2001). ArticleCAS Google Scholar
Somogyi, K. & Rorth, P. Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration. Dev. Cell7, 85–93 (2004). ArticleCAS Google Scholar
Sahai, E. Mechanisms of cancer cell invasion. Curr. Opin. Genet. Dev.15, 87–96 (2005). ArticleCAS Google Scholar
DeMali, K. A., Wennerberg, K. & Burridge, K. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol.15, 572–582 (2003). ArticleCAS Google Scholar
Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell110, 673–687 (2002). ArticleCAS Google Scholar
Brakebusch, C., Bouvard, D., Stanchi, F., Sakai, T. & Fassler, R. Integrins in invasive growth. J. Clin. Invest.109, 999–1006 (2002). ArticleCAS Google Scholar
Caswell, P. T. et al. Rab25 associates with α5β1-integrin to promote invasive migration in 3D microenvironments. Dev Cell13, 496–510 (2007). ArticleCAS Google Scholar
Brakebusch, C. & Fassler, R. β1-integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev.24, 403–411 (2005). ArticleCAS Google Scholar
Wang, W. et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res64, 8585–8594 (2004). ArticleCAS Google Scholar
White, D. E. et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell6, 159–170 (2004). ArticleCAS Google Scholar
Yao, E. S. et al. Increased β1-integrin is associated with decreased survival in invasive breast cancer. Cancer Res.67, 659–664 (2007). ArticleCAS Google Scholar
Brandt, D. T. et al. Dia1 and IQGAP1 interact in cell migration and phagocytic cup formation. J. Cell Biol.178, 193–200 (2007). ArticleCAS Google Scholar
Zaromytidou, A.-I., Miralles, F. & Treisman, R. MAL and Ternary Complex Factor use different mechanisms to contact a common surface on the Serum Response Factor DNA-binding domain. Mol. Cell. Biol.26, 4134–4148 (2006). ArticleCAS Google Scholar
Liu, Z. P., Wang, Z., Yanagisawa, H. & Olson, E. N. Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin. Dev. Cell9, 261–270 (2005). Article Google Scholar
Kitzing, T. M. et al. Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes Dev.21, 1478–1483 (2007). ArticleCAS Google Scholar
Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol.160, 267–277 (2003). ArticleCAS Google Scholar
Spessotto, P. et al. β1-Integrin-dependent cell adhesion to EMILIN-1 is mediated by the gC1q domain. J. Biol. Chem.278, 6160–6167 (2003). ArticleCAS Google Scholar
Medjkane, S., Perez-Sanchez, C., Gaggioli, C., Sahai, E. & Treisman, R. Myocardin-related transcription factors and SRF are required for cytoskeleton dynamics and experimental metastasis. Nature Cell Biol.11, 257–268 (2009). ArticleCAS Google Scholar
Padua, D. et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell133, 66–77 (2008). ArticleCAS Google Scholar
Carreira, S. et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev.20, 3426–3439 (2006). ArticleCAS Google Scholar
Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature404, 604–609 (2000). ArticleCAS Google Scholar
Freddie, C. T., Ji, Z., Marais, A. & Sharrocks, A. D. Functional interactions between the Forkhead transcription factor FOXK1 and the MADS-box protein SRF. Nucleic Acids Res.35, 5203–5212 (2007). ArticleCAS Google Scholar
Worzfeld, T., Puschel, A. W., Offermanns, S. & Kuner, R. Plexin-B family members demonstrate non-redundant expression patterns in the developing mouse nervous system: an anatomical basis for morphogenetic effects of Sema4D during development. Eur J. Neurosci.19, 2622–2632 (2004). Article Google Scholar
Saeed, A. I. et al. TM4: a free, open-source system for microarray data management and analysis. BioTechniques34, 374–378 (2003). ArticleCAS Google Scholar