Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt (original) (raw)
References
Doe, C. Q. Chinmo and neuroblast temporal identity. Cell127, 254–256 (2006). ArticleCAS Google Scholar
Zhu, S. et al. Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell127, 409–422 (2006). ArticleCAS Google Scholar
Kornberg, T. B. & Guha, A. Understanding morphogen gradients: a problem of dispersion and containment. Curr. Opin. Genet. Dev.17, 264–271 (2007). ArticleCAS Google Scholar
Moss, E. G. Heterochronic genes and the nature of developmental time. Curr. Biol.17, R425–R434 (2007). ArticleCAS Google Scholar
Frasch, M. A matter of timing: microRNA-controlled temporal identities in worms and flies. Genes Dev.22, 1572–1576 (2008). ArticleCAS Google Scholar
Karp, X. & Ambros, V. Developmental biology. Encountering microRNAs in cell fate signaling. Science310, 1288–1289 (2005). ArticleCAS Google Scholar
Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell113, 673–676 (2003). CASPubMed Google Scholar
Riddiford, L. M. in The Development of Drosophila melanogaster (eds Bate, M. & Arias, A. M.) 899–929 (Cold Spring Harbor Laboratory Press, 1993). Google Scholar
Banerjee, I. & Clayton, P. The genetic basis for the timing of human puberty. J. Neuroendocrinol.19, 831–838 (2007). ArticleCAS Google Scholar
Carel, J. C. & Leger, J. Clinical practice. Precocious puberty. N. Engl. J. Med.358, 2366–2377 (2008). ArticleCAS Google Scholar
Naora, H. & Montell, D. J. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nature Rev. Cancer5, 355–366 (2005). ArticleCAS Google Scholar
Montell, D. J. Border-cell migration: the race is on. Nature Rev. Mol. Cell Biol.4, 13–24 (2003). ArticleCAS Google Scholar
Rorth, P. Initiating and guiding migration: lessons from border cells. Trends Cell Biol.12, 325–331 (2002). ArticleCAS Google Scholar
Bai, J., Uehara, Y. & Montell, D. J. Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell103, 1047–1058 (2000). ArticleCAS Google Scholar
Schwartz, M. B., Kelly, T. J., Woods, C. W. & Imberski, R. B. Ecdysteroid fluctuations in adult Drosophila melanogaster caused by elimination of pupal reserves and synthesis by early vitellogenic ovarian follicles. Insect Biochem.19, 243–249 (1989). ArticleCAS Google Scholar
Buszczak, M. et al. Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development126, 4581–4589 (1999). CASPubMed Google Scholar
Gaziova, I., Bonnette, P. C., Henrich, V. C. & Jindra, M. Cell-autonomous roles of the ecdysoneless gene in Drosophila development and oogenesis. Development131, 2715–2725 (2004). ArticleCAS Google Scholar
Carney, G. E. & Bender, M. The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics154, 1203–1211 (2000). CASPubMedPubMed Central Google Scholar
Silver, D. L. & Montell, D. J. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell107, 831–841 (2001). ArticleCAS Google Scholar
Xi, R., McGregor, J. R. & Harrison, D. A. A gradient of JAK pathway activity patterns the anterior–posterior axis of the follicular epithelium. Dev. Cell4, 167–177 (2003). ArticleCAS Google Scholar
Silver, D. L., Geisbrecht, E. R. & Montell, D. J. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development132, 3483–3492 (2005). ArticleCAS Google Scholar
Starz-Gaiano, M., Melani, M., Wang, X., Meinhardt, H. & Montell, D. J. Feedback inhibition of Jak/STAT signaling by apontic is required to limit an invasive cell population. Dev. Cell14, 726–738 (2008). ArticleCAS Google Scholar
Kozlova, T. & Thummel, C. S. Essential roles for ecdysone signaling during Drosophila mid-embryonic development. Science301, 1911–1914 (2003). ArticleCAS Google Scholar
Hackney, J. F., Pucci, C., Naes, E. & Dobens, L. Ras signaling modulates activity of the ecdysone receptor EcR during cell migration in the Drosophila ovary. Dev. Dyn.236, 1213–1226 (2007). ArticleCAS Google Scholar
Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E. & Cherbas, P. EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development130, 271–284 (2003). ArticleCAS Google Scholar
Kozlova, T. & Thummel, C. S. Spatial patterns of ecdysteroid receptor activation during the onset of Drosophila metamorphosis. Development129, 1739–1750 (2002). CASPubMed Google Scholar
Rubenstein, E. C., Kelly, T. J., Schwartz, M. B. & Woods, C. W. In vitro synthesis and secretion of ecdysteroids by Drosophila melanogaster ovaries. J. Exp. Zool.223, 305–308 (1982). ArticleCAS Google Scholar
Chavez, V. M. et al. The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. Development127, 4115–4126 (2000). CASPubMed Google Scholar
Freeman, M. R., Dobritsa, A., Gaines, P., Segraves, W. A. & Carlson, J. R. The dare gene: steroid hormone production, olfactory behavior, and neural degeneration in Drosophila. Development126, 4591–4602 (1999). CASPubMed Google Scholar
Petryk, A. et al. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc. Natl Acad. Sci. USA100, 13773–13778 (2003). ArticleCAS Google Scholar
Warren, J. T. et al. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc. Natl Acad. Sci. USA99, 11043–11048 (2002). ArticleCAS Google Scholar
Warren, J. T. et al. Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochem. Mol. Biol.34, 991–1010 (2004). ArticleCAS Google Scholar
Schubiger, M., Tomita, S., Sung, C., Robinow, S. & Truman, J. W. Isoform specific control of gene activity in vivo by the Drosophila ecdysone receptor. Mech. Dev.120, 909–918 (2003). ArticleCAS Google Scholar
Hu, S., Fambrough, D., Atashi, J. R., Goodman, C. S. & Crews, S. T. The Drosophila abrupt gene encodes a BTB-zinc finger regulatory protein that controls the specificity of neuromuscular connections. Genes Dev.9, 2936–2948 (1995). ArticleCAS Google Scholar
Li, W., Wang, F., Menut, L. & Gao, F. B. BTB/POZ-zinc finger protein abrupt suppresses dendritic branching in a neuronal subtype-specific and dosage-dependent manner. Neuron43, 823–834 (2004). ArticleCAS Google Scholar
Sugimura, K., Satoh, D., Estes, P., Crews, S. & Uemura, T. Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt. Neuron43, 809–822 (2004). ArticleCAS Google Scholar
Yan, J., Tsai, S. Y. & Tsai, M. J. SRC-3/AIB1: transcriptional coactivator in oncogenesis. Acta Pharmacol. Sin.27, 387–394 (2006). Article Google Scholar
Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron22, 451–461 (1999). ArticleCAS Google Scholar
Harrison, D. A., Binari, R., Nahreini, T. S., Gilman, M. & Perrimon, N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J.14, 2857–2865 (1995). ArticleCAS Google Scholar
Tam, P. P. & Loebel, D. A. Gene function in mouse embryogenesis: get set for gastrulation. Nature Rev. Genet.8, 368–381 (2007). ArticleCAS Google Scholar
Lander, A. D. Morpheus unbound: reimagining the morphogen gradient. Cell128, 245–256 (2007). ArticleCAS Google Scholar
Maurange, C., Cheng, L. & Gould, A. P. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell133, 891–902 (2008). ArticleCAS Google Scholar
Sokol, N. S., Xu, P., Jan, Y. N. & Ambros, V. Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev.22, 1591–1596 (2008). ArticleCAS Google Scholar
Caygill, E. E. & Johnston, L. A. Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr. Biol.18, 943–950 (2008). ArticleCAS Google Scholar
Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science226, 409–416 (1984). ArticleCAS Google Scholar
Sempere, L. F., Sokol, N. S., Dubrovsky, E. B., Berger, E. M. & Ambros, V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Dev. Biol.259, 9–18 (2003). ArticleCAS Google Scholar
Sempere, L. F., Dubrovsky, E. B., Dubrovskaya, V. A., Berger, E. M. & Ambros, V. The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev. Biol.244, 170–179 (2002). ArticleCAS Google Scholar
Bashirullah, A. et al. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Dev. Biol.259, 1–8 (2003). ArticleCAS Google Scholar
Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development125, 1049–1057 (1998). CASPubMed Google Scholar
Manseau, L. et al. GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev. Dyn.209, 310–322 (1997). ArticleCAS Google Scholar
McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE2004, pl6 (2004). PubMed Google Scholar
Yao, J. G. & Sun, Y. H. Eyg and Ey Pax proteins act by distinct transcriptional mechanisms in Drosophila development. EMBO J.24, 2602–2612 (2005). ArticleCAS Google Scholar
Wang, X. et al. Analysis of cell migration using whole-genome expression profiling of migratory cells in the Drosophila ovary. Dev. Cell10, 483–495 (2006). ArticleCAS Google Scholar
Geisbrecht, E. R. & Montell, D. J. A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell118, 111–125 (2004). ArticleCAS Google Scholar
Tsai, C. C., Kao, H. Y., Yao, T. P., McKeown, M. & Evans, R. M. SMRTER, a Drosophila nuclear receptor coregulator, reveals that EcR-mediated repression is critical for development. Mol. Cell4, 175–186 (1999). ArticleCAS Google Scholar