Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt (original) (raw)

References

  1. Doe, C. Q. Chinmo and neuroblast temporal identity. Cell 127, 254–256 (2006).
    Article CAS Google Scholar
  2. Zhu, S. et al. Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell 127, 409–422 (2006).
    Article CAS Google Scholar
  3. Kornberg, T. B. & Guha, A. Understanding morphogen gradients: a problem of dispersion and containment. Curr. Opin. Genet. Dev. 17, 264–271 (2007).
    Article CAS Google Scholar
  4. Moss, E. G. Heterochronic genes and the nature of developmental time. Curr. Biol. 17, R425–R434 (2007).
    Article CAS Google Scholar
  5. Frasch, M. A matter of timing: microRNA-controlled temporal identities in worms and flies. Genes Dev. 22, 1572–1576 (2008).
    Article CAS Google Scholar
  6. Karp, X. & Ambros, V. Developmental biology. Encountering microRNAs in cell fate signaling. Science 310, 1288–1289 (2005).
    Article CAS Google Scholar
  7. Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113, 673–676 (2003).
    CAS PubMed Google Scholar
  8. Riddiford, L. M. in The Development of Drosophila melanogaster (eds Bate, M. & Arias, A. M.) 899–929 (Cold Spring Harbor Laboratory Press, 1993).
    Google Scholar
  9. Banerjee, I. & Clayton, P. The genetic basis for the timing of human puberty. J. Neuroendocrinol. 19, 831–838 (2007).
    Article CAS Google Scholar
  10. Carel, J. C. & Leger, J. Clinical practice. Precocious puberty. N. Engl. J. Med. 358, 2366–2377 (2008).
    Article CAS Google Scholar
  11. Naora, H. & Montell, D. J. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nature Rev. Cancer 5, 355–366 (2005).
    Article CAS Google Scholar
  12. Montell, D. J. Border-cell migration: the race is on. Nature Rev. Mol. Cell Biol. 4, 13–24 (2003).
    Article CAS Google Scholar
  13. Rorth, P. Initiating and guiding migration: lessons from border cells. Trends Cell Biol. 12, 325–331 (2002).
    Article CAS Google Scholar
  14. Bai, J., Uehara, Y. & Montell, D. J. Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103, 1047–1058 (2000).
    Article CAS Google Scholar
  15. Schwartz, M. B., Kelly, T. J., Woods, C. W. & Imberski, R. B. Ecdysteroid fluctuations in adult Drosophila melanogaster caused by elimination of pupal reserves and synthesis by early vitellogenic ovarian follicles. Insect Biochem. 19, 243–249 (1989).
    Article CAS Google Scholar
  16. Buszczak, M. et al. Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development 126, 4581–4589 (1999).
    CAS PubMed Google Scholar
  17. Gaziova, I., Bonnette, P. C., Henrich, V. C. & Jindra, M. Cell-autonomous roles of the ecdysoneless gene in Drosophila development and oogenesis. Development 131, 2715–2725 (2004).
    Article CAS Google Scholar
  18. Carney, G. E. & Bender, M. The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics 154, 1203–1211 (2000).
    CAS PubMed PubMed Central Google Scholar
  19. Silver, D. L. & Montell, D. J. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 107, 831–841 (2001).
    Article CAS Google Scholar
  20. Xi, R., McGregor, J. R. & Harrison, D. A. A gradient of JAK pathway activity patterns the anterior–posterior axis of the follicular epithelium. Dev. Cell 4, 167–177 (2003).
    Article CAS Google Scholar
  21. Silver, D. L., Geisbrecht, E. R. & Montell, D. J. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development 132, 3483–3492 (2005).
    Article CAS Google Scholar
  22. Starz-Gaiano, M., Melani, M., Wang, X., Meinhardt, H. & Montell, D. J. Feedback inhibition of Jak/STAT signaling by apontic is required to limit an invasive cell population. Dev. Cell 14, 726–738 (2008).
    Article CAS Google Scholar
  23. Kozlova, T. & Thummel, C. S. Essential roles for ecdysone signaling during Drosophila mid-embryonic development. Science 301, 1911–1914 (2003).
    Article CAS Google Scholar
  24. Hackney, J. F., Pucci, C., Naes, E. & Dobens, L. Ras signaling modulates activity of the ecdysone receptor EcR during cell migration in the Drosophila ovary. Dev. Dyn. 236, 1213–1226 (2007).
    Article CAS Google Scholar
  25. Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E. & Cherbas, P. EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 130, 271–284 (2003).
    Article CAS Google Scholar
  26. Kozlova, T. & Thummel, C. S. Spatial patterns of ecdysteroid receptor activation during the onset of Drosophila metamorphosis. Development 129, 1739–1750 (2002).
    CAS PubMed Google Scholar
  27. Rubenstein, E. C., Kelly, T. J., Schwartz, M. B. & Woods, C. W. In vitro synthesis and secretion of ecdysteroids by Drosophila melanogaster ovaries. J. Exp. Zool. 223, 305–308 (1982).
    Article CAS Google Scholar
  28. Chavez, V. M. et al. The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. Development 127, 4115–4126 (2000).
    CAS PubMed Google Scholar
  29. Freeman, M. R., Dobritsa, A., Gaines, P., Segraves, W. A. & Carlson, J. R. The dare gene: steroid hormone production, olfactory behavior, and neural degeneration in Drosophila. Development 126, 4591–4602 (1999).
    CAS PubMed Google Scholar
  30. Petryk, A. et al. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc. Natl Acad. Sci. USA 100, 13773–13778 (2003).
    Article CAS Google Scholar
  31. Warren, J. T. et al. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 99, 11043–11048 (2002).
    Article CAS Google Scholar
  32. Warren, J. T. et al. Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochem. Mol. Biol. 34, 991–1010 (2004).
    Article CAS Google Scholar
  33. Schubiger, M., Tomita, S., Sung, C., Robinow, S. & Truman, J. W. Isoform specific control of gene activity in vivo by the Drosophila ecdysone receptor. Mech. Dev. 120, 909–918 (2003).
    Article CAS Google Scholar
  34. Hu, S., Fambrough, D., Atashi, J. R., Goodman, C. S. & Crews, S. T. The Drosophila abrupt gene encodes a BTB-zinc finger regulatory protein that controls the specificity of neuromuscular connections. Genes Dev. 9, 2936–2948 (1995).
    Article CAS Google Scholar
  35. Li, W., Wang, F., Menut, L. & Gao, F. B. BTB/POZ-zinc finger protein abrupt suppresses dendritic branching in a neuronal subtype-specific and dosage-dependent manner. Neuron 43, 823–834 (2004).
    Article CAS Google Scholar
  36. Sugimura, K., Satoh, D., Estes, P., Crews, S. & Uemura, T. Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt. Neuron 43, 809–822 (2004).
    Article CAS Google Scholar
  37. Yan, J., Tsai, S. Y. & Tsai, M. J. SRC-3/AIB1: transcriptional coactivator in oncogenesis. Acta Pharmacol. Sin. 27, 387–394 (2006).
    Article Google Scholar
  38. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).
    Article CAS Google Scholar
  39. Harrison, D. A., Binari, R., Nahreini, T. S., Gilman, M. & Perrimon, N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14, 2857–2865 (1995).
    Article CAS Google Scholar
  40. Tam, P. P. & Loebel, D. A. Gene function in mouse embryogenesis: get set for gastrulation. Nature Rev. Genet. 8, 368–381 (2007).
    Article CAS Google Scholar
  41. Lander, A. D. Morpheus unbound: reimagining the morphogen gradient. Cell 128, 245–256 (2007).
    Article CAS Google Scholar
  42. Maurange, C., Cheng, L. & Gould, A. P. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133, 891–902 (2008).
    Article CAS Google Scholar
  43. Sokol, N. S., Xu, P., Jan, Y. N. & Ambros, V. Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev. 22, 1591–1596 (2008).
    Article CAS Google Scholar
  44. Caygill, E. E. & Johnston, L. A. Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr. Biol. 18, 943–950 (2008).
    Article CAS Google Scholar
  45. Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409–416 (1984).
    Article CAS Google Scholar
  46. Sempere, L. F., Sokol, N. S., Dubrovsky, E. B., Berger, E. M. & Ambros, V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Dev. Biol. 259, 9–18 (2003).
    Article CAS Google Scholar
  47. Sempere, L. F., Dubrovsky, E. B., Dubrovskaya, V. A., Berger, E. M. & Ambros, V. The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev. Biol. 244, 170–179 (2002).
    Article CAS Google Scholar
  48. Bashirullah, A. et al. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Dev. Biol. 259, 1–8 (2003).
    Article CAS Google Scholar
  49. Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998).
    CAS PubMed Google Scholar
  50. Manseau, L. et al. GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev. Dyn. 209, 310–322 (1997).
    Article CAS Google Scholar
  51. McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004, pl6 (2004).
    PubMed Google Scholar
  52. Yao, J. G. & Sun, Y. H. Eyg and Ey Pax proteins act by distinct transcriptional mechanisms in Drosophila development. EMBO J. 24, 2602–2612 (2005).
    Article CAS Google Scholar
  53. Wang, X. et al. Analysis of cell migration using whole-genome expression profiling of migratory cells in the Drosophila ovary. Dev. Cell 10, 483–495 (2006).
    Article CAS Google Scholar
  54. Geisbrecht, E. R. & Montell, D. J. A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 118, 111–125 (2004).
    Article CAS Google Scholar
  55. Tsai, C. C., Kao, H. Y., Yao, T. P., McKeown, M. & Evans, R. M. SMRTER, a Drosophila nuclear receptor coregulator, reveals that EcR-mediated repression is critical for development. Mol. Cell 4, 175–186 (1999).
    Article CAS Google Scholar

Download references