Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107 (original) (raw)
References
Ellenberger, T. & Tomkinson, A. E. Eukaryotic DNA ligases: structural and functional insights. Annu. Rev. Biochem77, 313–338 (2008). ArticleCASPubMed Google Scholar
Webster, A. D., Barnes, D. E., Arlett, C. F., Lehmann, A. R. & Lindahl, T. Growth retardation and immunodeficiency in a patient with mutations in the DNA ligase I gene. Lancet339, 1508–1509 (1992). ArticleCASPubMed Google Scholar
Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141 (2002). ArticleCASPubMed Google Scholar
Jentsch, S., McGrath, J. P. & Varshavsky, A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature329, 131–134 (1987). ArticleCASPubMed Google Scholar
Bailly, V., Lauder, S., Prakash, S. & Prakash, L. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J. Biol. Chem.272, 23360–23365 (1997). ArticleCASPubMed Google Scholar
Broomfield, S., Chow, B. L. & Xiao, W. MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc. Natl Acad. Sci. USA95, 5678–5683 (1998). ArticleCASPubMed Google Scholar
Seufert, W. & Jentsch, S. Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J.9, 543–550 (1990). ArticleCASPubMed Google Scholar
Ulrich, H. D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J.19, 3388–3397 (2000). ArticleCASPubMed Google Scholar
Torres-Ramos, C. A., Prakash, S. & Prakash, L. Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol. Cell. Biol.22, 2419–2426 (2002). ArticleCASPubMed Google Scholar
Schiestl, R. H., Reynolds, P., Prakash, S. & Prakash, L. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol. Cell. Biol.9, 1882–1896 (1989). ArticleCASPubMed Google Scholar
Weinert, T. A. & Hartwell, L. H. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics134, 63–80 (1993). CASPubMed CentralPubMed Google Scholar
Johnston, L. H. & Nasmyth, K. A. Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature274, 891–893 (1978). ArticleCASPubMed Google Scholar
Dohmen, R. J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science263, 1273–1276 (1994). ArticleCASPubMed Google Scholar
Bielinsky, A. K. & Gerbi, S. A. Chromosomal ARS1 has a single leading strand start site. Mol. Cell3, 477–486 (1999). ArticleCASPubMed Google Scholar
Ireland, M. J., Reinke, S. S. & Livingston, D. M. The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast. Genetics155, 1657–1665 (2000). CASPubMed CentralPubMed Google Scholar
Osborn, A. J. & Elledge, S. J. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev.17, 1755–1767 (2003). ArticleCASPubMed Google Scholar
Sanchez, Y. et al. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science271, 357–360 (1996). ArticleCASPubMed Google Scholar
Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell129, 665–679 (2007). ArticleCASPubMed Google Scholar
Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature425, 188–191 (2003). ArticleCASPubMed Google Scholar
Haracska, L., Torres-Ramos, C. A., Johnson, R. E., Prakash, S. & Prakash, L. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell. Biol.24, 4267–4274 (2004). ArticleCASPubMed Google Scholar
Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell96, 645–653 (1999). ArticleCASPubMed Google Scholar
Zhang, Z., Shibahara, K. & Stillman, B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature408, 221–225 (2000). ArticleCASPubMed Google Scholar
Ellison, M. J. & Hochstrasser, M. Epitope-tagged ubiquitin. A new probe for analyzing ubiquitin function. J. Biol. Chem.266, 21150–21157 (1991). CASPubMed Google Scholar
Das-Bradoo, S., Ricke, R. M. & Bielinsky, A. K. Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast. Mol. Cell. Biol.26, 4806–4817 (2006). ArticleCASPubMed Google Scholar
van der Kemp, P. A., Padula, M. D., Burguiere-Slezak, G., Ulrich, H. D. & Boiteux, S. PCNA monoubiquitylation and DNA polymerase-eta ubiquitin-binding domain are required to prevent 8-oxoguanine-induced mutagenesis in Saccharomyces cerevisiae. Nucleic Acids Res.37, 2549–2559 (2009). ArticleCASPubMed Google Scholar
Wang, M. & Pickart, C. M. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J.24, 4324–4333 (2005). ArticleCASPubMed Google Scholar
Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004). ArticleCASPubMed Google Scholar
Frampton, J. et al. Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol. Biol. Cell17, 2976–2985 (2006). ArticleCASPubMed Google Scholar
Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell14, 491–500.
Kao, H. I., Veeraraghavan, J., Polaczek, P., Campbell, J. L. & Bambara, R. A. On the roles of Saccharomyces cerevisiae Dna2p and Flap endonuclease 1 in Okazaki fragment processing. J. Biol. Chem.279, 15014–15024 (2004). ArticleCASPubMed Google Scholar
Labib, K., Tercero, J. A. & Diffley, J. F. Uninterrupted MCM2–7 function required for DNA replication fork progression. Science288, 1643–1647 (2000). ArticleCASPubMed Google Scholar
Lorenz, M. C. et al. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene158, 113–117 (1995). ArticleCASPubMed Google Scholar
Wen, W., Meinkoth, J. L., Tsien, R. Y. & Taylor, S. S. Identification of a signal for rapid export of proteins from the nucleus. Cell82, 463–473 (1995). ArticleCASPubMed Google Scholar
Ricke, R. M. & Bielinsky, A. K. Mcm10 regulates the stability and chromatin association of DNA polymerase-α. Mol. Cell16, 173–185 (2004). ArticleCASPubMed Google Scholar
Ricke, R. M. & Bielinsky, A. K. A conserved Hsp10-like domain in Mcm10 is required to stabilize the catalytic subunit of DNA polymerase-α in budding yeast. J. Biol. Chem.281, 18414–18425 (2006). ArticleCASPubMed Google Scholar
Diffley, J. F. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2–7 during G1 phase. Nature Cell Biol.4, 198–207 (2002). ArticlePubMed Google Scholar
Silva, J. M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nature Genetics37, 1281–1288 (2005). ArticleCASPubMed Google Scholar
Hannon, G. J. & Conklin, D. S. RNA interference by short hairpin RNAs expressed in vertebrate cells. Methods Mol. Biol.257, 255–266 (2004). CASPubMed Google Scholar
Motegi, A. et al. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication fork. Proc. Natl Acad. Sci. USA26, 12411–12416 (2008). Article Google Scholar