Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei (original) (raw)
References
Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol.7, 644–656 (2006). ArticleCAS Google Scholar
Nasmyth, K. & Haering, C. H. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem.74, 595–648 (2005). ArticleCASPubMed Google Scholar
Haering, C. H., Farcas, A. M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature454, 297–301 (2008). ArticleCASPubMed Google Scholar
Yanagida, M. Clearing the way for mitosis: is cohesin a target? Nature Rev. Mol. Cell Biol.10, 489–496 (2009). ArticleCAS Google Scholar
Diaz-Martinez, L. A., Gimenez-Abian, J. F. & Clarke, D. J. Chromosome cohesion - rings, knots, orcs and fellowship. J. Cell Sci.121, 2107–2114 (2008). ArticleCASPubMed Google Scholar
Guacci, V. Sister chromatid cohesion: the cohesin cleavage model does not ring true. Genes Cells12, 693–708 (2007). CASPubMed Google Scholar
Pauli, A. et al. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev. Cell14, 239–251 (2008). ArticleCASPubMedPubMed Central Google Scholar
Toyoda, Y. & Yanagida, M. Coordinated requirements of human topo II and cohesin for metaphase centromere alignment under Mad2-dependent spindle checkpoint surveillance. Mol. Biol. Cell17, 2287–2302 (2006). ArticleCASPubMedPubMed Central Google Scholar
Uemura, T. et al. DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell50, 917–925 (1987). ArticleCASPubMed Google Scholar
Porter, A. C. & Farr, C. J. Topoisomerase II: untangling its contribution at the centromere. Chromosome Res.12, 569–583 (2004). ArticleCASPubMed Google Scholar
Shimada, K. & Gasser, S. M. The origin recognition complex functions in sister-chromatid cohesion in Saccharomyces cerevisiae. Cell128, 85–99 (2007). ArticleCASPubMed Google Scholar
Lam, W. W., Peterson, E. A., Yeung, M. & Lavoie, B. D. Condensin is required for chromosome arm cohesion during mitosis. Genes Dev.20, 2973–2984 (2006). ArticleCASPubMedPubMed Central Google Scholar
Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell103, 375–386 (2000). ArticleCASPubMed Google Scholar
Sullivan, M., Higuchi, T., Katis, V. L. & Uhlmann, F. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell117, 471–482 (2004). ArticleCASPubMed Google Scholar
Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev.12, 1986–1997 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sonoda, E. et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell1, 759–770 (2001). ArticleCASPubMed Google Scholar
Vass, S. et al. Depletion of Drad21/Scc1 in Drosophila cells leads to instability of the cohesin complex and disruption of mitotic progression. Curr. Biol.13, 208–218 (2003). ArticleCASPubMed Google Scholar
Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H. & Peters, J. M. Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol.151, 749–762 (2000). ArticleCASPubMedPubMed Central Google Scholar
Warren, W. D. et al. The Drosophila RAD21 cohesin persists at the centromere region in mitosis. Curr. Biol.10, 1463–1466 (2000). ArticleCASPubMed Google Scholar
Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol.8, 379–393 (2007). ArticleCAS Google Scholar
Mapelli, M., Massimiliano, L., Santaguida, S. & Musacchio, A. The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell131, 730–743 (2007). ArticleCASPubMed Google Scholar
Luo, X. et al. Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nature Struct. Biol.7, 224–229 (2000). ArticleCASPubMed Google Scholar
Townsley, F. M., Aristarkhov, A., Beck, S., Hershko, A. & Ruderman, J. V. Dominant-negative cyclin-selective ubiquitin carrier protein E2-C/UbcH10 blocks cells in metaphase. Proc. Natl Acad. Sci. USA94, 2362–2367 (1997). ArticleCASPubMedPubMed Central Google Scholar
Logarinho, E. et al. Different spindle checkpoint proteins monitor microtubule attachment and tension at kinetochores in Drosophila cells. J. Cell Sci.117, 1757–1771 (2004). ArticleCASPubMed Google Scholar
Buffin, E., Lefebvre, C., Huang, J., Gagou, M. E. & Karess, R. E. Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr. Biol.15, 856–861 (2005). ArticleCASPubMed Google Scholar
Schuh, M., Lehner, C. F. & Heidmann, S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol.17, 237–243 (2007). ArticleCASPubMed Google Scholar
Buchenau, P., Saumweber, H. & Arndt-Jovin, D. J. Consequences of topoisomerase II inhibition in early embryogenesis of Drosophila revealed by in vivo confocal laser scanning microscopy. J. Cell Sci.104, 1175–1185 (1993). CASPubMed Google Scholar
Kelly, A. E. & Funabiki, H. Correcting aberrant kinetochore microtubule attachments: an Aurora B-centric view. Curr. Opin. Cell Biol.21, 51–58 (2009). ArticleCASPubMedPubMed Central Google Scholar
Murata-Hori, M., Tatsuka, M. & Wang, Y. L. Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol. Biol. Cell13, 1099–1108 (2002). ArticleCASPubMedPubMed Central Google Scholar
Murray, A. W., Solomon, M. J. & Kirschner, M. W. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature339, 280–286 (1989). ArticleCASPubMed Google Scholar
Shirayama, M., Toth, A., Galova, M. & Nasmyth, K. APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature402, 203–207 (1999). ArticleCASPubMed Google Scholar
Thornton, B. R. & Toczyski, D. P. Securin and B-cyclin/CDK are the only essential targets of the APC. Nature Cell Biol.5, 1090–1094 (2003). ArticleCASPubMed Google Scholar
Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell78, 67–74 (1994). ArticleCASPubMed Google Scholar
Polyak, K. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev.8, 9–22 (1994). ArticleCASPubMed Google Scholar
Sullivan, M., Lehane, C. & Uhlmann, F. Orchestrating anaphase and mitotic exit: separase cleavage and localization of Slk19. Nature Cell Biol.3, 771–777 (2001). ArticleCASPubMed Google Scholar
Tsou, M. F. et al. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell17, 344–354 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sullivan, W., Ashburner, A. & Hawley, R. S. Drosophila Protocols (Cold Spring Harbor Laboratory Press, 2000). Google Scholar
Rape, M., Reddy, S. K. & Kirschner, M. W. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell124, 89–103 (2006). ArticleCASPubMed Google Scholar
McGuinness, B. E. et al. Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol.19, 369–380 (2009). ArticleCASPubMed Google Scholar
Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process.7, 27–41 (1998). ArticleCASPubMed Google Scholar