Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei (original) (raw)

References

  1. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006).
    Article CAS Google Scholar
  2. Nasmyth, K. & Haering, C. H. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74, 595–648 (2005).
    Article CAS PubMed Google Scholar
  3. Haering, C. H., Farcas, A. M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297–301 (2008).
    Article CAS PubMed Google Scholar
  4. Yanagida, M. Clearing the way for mitosis: is cohesin a target? Nature Rev. Mol. Cell Biol. 10, 489–496 (2009).
    Article CAS Google Scholar
  5. Diaz-Martinez, L. A., Gimenez-Abian, J. F. & Clarke, D. J. Chromosome cohesion - rings, knots, orcs and fellowship. J. Cell Sci. 121, 2107–2114 (2008).
    Article CAS PubMed Google Scholar
  6. Guacci, V. Sister chromatid cohesion: the cohesin cleavage model does not ring true. Genes Cells 12, 693–708 (2007).
    CAS PubMed Google Scholar
  7. Pauli, A. et al. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev. Cell 14, 239–251 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  8. Coelho, P. A. et al. Dual role of topoisomerase II in centromere resolution and aurora B activity. PLoS Biol. 6, e207 (2008).
    Article PubMed PubMed Central Google Scholar
  9. Toyoda, Y. & Yanagida, M. Coordinated requirements of human topo II and cohesin for metaphase centromere alignment under Mad2-dependent spindle checkpoint surveillance. Mol. Biol. Cell 17, 2287–2302 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  10. Uemura, T. et al. DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50, 917–925 (1987).
    Article CAS PubMed Google Scholar
  11. Porter, A. C. & Farr, C. J. Topoisomerase II: untangling its contribution at the centromere. Chromosome Res. 12, 569–583 (2004).
    Article CAS PubMed Google Scholar
  12. Shimada, K. & Gasser, S. M. The origin recognition complex functions in sister-chromatid cohesion in Saccharomyces cerevisiae. Cell 128, 85–99 (2007).
    Article CAS PubMed Google Scholar
  13. Lam, W. W., Peterson, E. A., Yeung, M. & Lavoie, B. D. Condensin is required for chromosome arm cohesion during mitosis. Genes Dev. 20, 2973–2984 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  14. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).
    Article CAS PubMed Google Scholar
  15. Sullivan, M., Higuchi, T., Katis, V. L. & Uhlmann, F. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 117, 471–482 (2004).
    Article CAS PubMed Google Scholar
  16. Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986–1997 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  17. Sonoda, E. et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 1, 759–770 (2001).
    Article CAS PubMed Google Scholar
  18. Vass, S. et al. Depletion of Drad21/Scc1 in Drosophila cells leads to instability of the cohesin complex and disruption of mitotic progression. Curr. Biol. 13, 208–218 (2003).
    Article CAS PubMed Google Scholar
  19. Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H. & Peters, J. M. Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol. 151, 749–762 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  20. Warren, W. D. et al. The Drosophila RAD21 cohesin persists at the centromere region in mitosis. Curr. Biol. 10, 1463–1466 (2000).
    Article CAS PubMed Google Scholar
  21. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007).
    Article CAS Google Scholar
  22. Mapelli, M., Massimiliano, L., Santaguida, S. & Musacchio, A. The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 131, 730–743 (2007).
    Article CAS PubMed Google Scholar
  23. Luo, X. et al. Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nature Struct. Biol. 7, 224–229 (2000).
    Article CAS PubMed Google Scholar
  24. Townsley, F. M., Aristarkhov, A., Beck, S., Hershko, A. & Ruderman, J. V. Dominant-negative cyclin-selective ubiquitin carrier protein E2-C/UbcH10 blocks cells in metaphase. Proc. Natl Acad. Sci. USA 94, 2362–2367 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  25. Logarinho, E. et al. Different spindle checkpoint proteins monitor microtubule attachment and tension at kinetochores in Drosophila cells. J. Cell Sci. 117, 1757–1771 (2004).
    Article CAS PubMed Google Scholar
  26. Buffin, E., Lefebvre, C., Huang, J., Gagou, M. E. & Karess, R. E. Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr. Biol. 15, 856–861 (2005).
    Article CAS PubMed Google Scholar
  27. Schuh, M., Lehner, C. F. & Heidmann, S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol. 17, 237–243 (2007).
    Article CAS PubMed Google Scholar
  28. Buchenau, P., Saumweber, H. & Arndt-Jovin, D. J. Consequences of topoisomerase II inhibition in early embryogenesis of Drosophila revealed by in vivo confocal laser scanning microscopy. J. Cell Sci. 104, 1175–1185 (1993).
    CAS PubMed Google Scholar
  29. Kelly, A. E. & Funabiki, H. Correcting aberrant kinetochore microtubule attachments: an Aurora B-centric view. Curr. Opin. Cell Biol. 21, 51–58 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  30. Murata-Hori, M., Tatsuka, M. & Wang, Y. L. Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol. Biol. Cell 13, 1099–1108 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  31. Murray, A. W., Solomon, M. J. & Kirschner, M. W. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339, 280–286 (1989).
    Article CAS PubMed Google Scholar
  32. Shirayama, M., Toth, A., Galova, M. & Nasmyth, K. APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402, 203–207 (1999).
    Article CAS PubMed Google Scholar
  33. Thornton, B. R. & Toczyski, D. P. Securin and B-cyclin/CDK are the only essential targets of the APC. Nature Cell Biol. 5, 1090–1094 (2003).
    Article CAS PubMed Google Scholar
  34. Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67–74 (1994).
    Article CAS PubMed Google Scholar
  35. Polyak, K. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 8, 9–22 (1994).
    Article CAS PubMed Google Scholar
  36. Sullivan, M., Lehane, C. & Uhlmann, F. Orchestrating anaphase and mitotic exit: separase cleavage and localization of Slk19. Nature Cell Biol. 3, 771–777 (2001).
    Article CAS PubMed Google Scholar
  37. Tsou, M. F. et al. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 17, 344–354 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  38. Sullivan, W., Ashburner, A. & Hawley, R. S. Drosophila Protocols (Cold Spring Harbor Laboratory Press, 2000).
    Google Scholar
  39. Rape, M., Reddy, S. K. & Kirschner, M. W. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124, 89–103 (2006).
    Article CAS PubMed Google Scholar
  40. McGuinness, B. E. et al. Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol. 19, 369–380 (2009).
    Article CAS PubMed Google Scholar
  41. Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).
    Article CAS PubMed Google Scholar

Download references