The spindle-assembly checkpoint in space and time (original) (raw)
Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell66, 507–517 (1991). ArticleCASPubMed Google Scholar
Li, R. & Murray, A. Feedback control of mitosis in budding yeast. Cell66, 519–531 (1991). References 1 and 2 report founding work that describes the identification of theBUBandMADgenes inS. cerevisiae. ArticleCASPubMed Google Scholar
Musacchio, A. & Hardwick, K. G. The spindle checkpoint: structural insights into dynamic signalling. Nature Rev. Mol. Cell Biol.3, 731–741 (2002). ArticleCAS Google Scholar
Taylor, S. S., Scott, M. I. & Holland, A. J. The spindle checkpoint: a quality control mechanism which ensures accurate chromosome segregation. Chromosome Res.12, 599–616 (2004). ArticleCASPubMed Google Scholar
Hwang, L. H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science279, 1041–1044 (1998). ArticleCASPubMed Google Scholar
Kim, S. H., Lin, D. P., Matsumoto, S., Kitazono, A. & Matsumoto, T. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science279, 1045–1047 (1998). ArticleCASPubMed Google Scholar
Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol.7, 644–656 (2006). ArticleCAS Google Scholar
Sudakin, V., Chan, G. K. & Yen, T. J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol.154, 925–936 (2001). First identification of the MCC in human cells and presentation of the 'kinetochore sensitization' model. ArticleCASPubMedPubMed Central Google Scholar
Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev.12, 1871–1883 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wassmann, K. & Benezra, R. Mad2 transiently associates with an APC/p55Cdc complex during mitosis. Proc. Natl Acad. Sci. USA95, 11193–11198 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wu, H. et al. p55CDC/hCDC20 is associated with BUBR1 and may be a downstream target of the spindle checkpoint kinase. Oncogene19, 4557–4562 (2000). ArticleCASPubMed Google Scholar
Tang, Z., Bharadwaj, R., Li, B. & Yu, H. Mad2-independent inhibition of APC–Cdc20 by the mitotic checkpoint protein Bub1R. Dev. Cell1, 227–237 (2001). ArticleCASPubMed Google Scholar
Shannon, K. B., Canman, J. C. & Salmon, E. D. Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension. Mol. Biol. Cell13, 3706–3719 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hardwick, K. G., Johnston, R. C., Smith, D. L. & Murray, A. W. MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J. Cell Biol.148, 871–882 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fraschini, R. et al. Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J.20, 6648–6659 (2001). ArticleCASPubMedPubMed Central Google Scholar
Millband, D. N. & Hardwick, K. G. Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mph1p-dependent manner. Mol. Cell. Biol.22, 2728–2742 (2002). ArticleCASPubMedPubMed Central Google Scholar
Poddar, A., Stukenberg, P. T. & Burke, D. J. Two complexes of spindle checkpoint proteins containing Cdc20 and Mad2 assemble during mitosis independently of the kinetochore in Saccharomyces cerevisiae. Eukaryot. Cell4, 867–878 (2005). ArticleCASPubMedPubMed Central Google Scholar
Morrow, C. J. et al. Bub1 and aurora B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. J. Cell Sci.118, 3639–3652 (2005). An insightful analysis that establishes a strong link between the activity of two SAC kinases and the association of the MCC with the APC/C. ArticleCASPubMed Google Scholar
D'Angiolella, V., Mari, C., Nocera, D., Rametti, L. & Grieco, D. The spindle checkpoint requires cyclin-dependent kinase activity. Genes Dev.17, 2520–2525 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kallio, M. J., McCleland, M. L., Stukenberg, P. T. & Gorbsky, G. J. Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr. Biol.12, 900–905 (2002). ArticleCASPubMed Google Scholar
Murata-Hori, M., Tatsuka, M. & Wang, Y. -L. Probing the dynamics and functions of Aurora B kinase in living cells during mitosis and cytokinesis. Mol. Biol. Cell13, 1099–1108 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol.161, 267–280 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol.161, 281–294 (2003). ArticleCASPubMedPubMed Central Google Scholar
Weiss, E. & Winey, M. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J. Cell Biol.132, 111–123 (1996). ArticleCASPubMed Google Scholar
Abrieu, A. et al. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell106, 83–93 (2001). ArticleCASPubMed Google Scholar
Hardwick, K. G., Weiss, E., Luca, F. C., Winey, M. & Murray, A. W. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science273, 953–956 (1996). Demonstration that the overexpression of Mps1 inS. cerevisiaeis sufficient to trigger a mitotic arrest. ArticleCASPubMed Google Scholar
De Antoni, A. et al. The mad1/mad2 complex as a template for mad2 activation in the spindle assembly checkpoint. Curr. Biol.15, 214–225 (2005). Characterization of the mechanism of kinetochore recruitment of Mad2 by a Mad1–Mad2 receptor. Introduction of the 'Mad2 template' model. ArticleCASPubMed Google Scholar
Sharp-Baker, H. & Chen, R. H. Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J. Cell Biol.153, 1239–1250 (2001). ArticleCASPubMedPubMed Central Google Scholar
Tang, Z., Shu, H., Oncel, D., Chen, S. & Yu, H. Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint. Mol. Cell16, 387–397 (2004). ArticleCASPubMed Google Scholar
Karess, R. Rod–Zw10–Zwilch: a key player in the spindle checkpoint. Trends Cell Biol.15, 386–392 (2005). ArticleCASPubMed Google Scholar
Habu, T., Kim, S. H., Weinstein, J. & Matsumoto, T. Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J.21, 6419–6428 (2002). ArticleCASPubMedPubMed Central Google Scholar
Xia, G. et al. Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. EMBO J.23, 3133–3143 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yudkovsky, Y., Shteinberg, M., Listovsky, T., Brandeis, M. & Hershko, A. Phosphorylation of Cdc20/fizzy negatively regulates the mammalian cyclosome/APC in the mitotic checkpoint. Biochem. Biophys. Res. Commun.271, 299–304 (2000). ArticleCASPubMed Google Scholar
Chung, E. & Chen, R. H. Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nature Cell Biol.5, 748–753 (2003). ArticleCASPubMed Google Scholar
Minshull, J., Sun, H., Tonks, N. K. & Murray, A. W. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell79, 475–486 (1994). ArticleCASPubMed Google Scholar
Takenaka, K., Gotoh, Y. & Nishida, E. MAP kinase is required for the spindle assembly checkpoint but is dispensable for the normal M phase entry and exit in Xenopus egg cell cycle extracts. J. Cell Biol.136, 1091–1097 (1997). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. M., Zhai, Y. & Ferrell, J. E. Jr. A role for mitogen-activated protein kinase in the spindle assembly checkpoint in XTC cells. J. Cell Biol.137, 433–443 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lou, Y. et al. Nek2A interacts with Mad1 and possibly functions as a novel integrator of the spindle checkpoint signaling. J. Biol. Chem.279, 20049–20057 (2004). ArticleCASPubMed Google Scholar
van Vugt, M. A. & Medema, R. H. Getting in and out of mitosis with Polo-like kinase-1. Oncogene24, 2844–2859 (2005). ArticleCASPubMed Google Scholar
Abrieu, A., Kahana, J. A., Wood, K. W. & Cleveland, D. W. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell102, 817–826 (2000). ArticleCASPubMed Google Scholar
Mao, Y., Desai, A. & Cleveland, D. W. Microtubule capture by CENP-E silences BubR1-dependent mitotic checkpoint signaling. J. Cell Biol.170, 873–880 (2005). Demonstration that the kinase activity of BUBR1 is controlled by CENP-E and is downregulated when CENP-E binds to microtubules. Checkpoint inactivation might require this pathway. ArticleCASPubMedPubMed Central Google Scholar
Howell, B. J. et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol.155, 1159–1172 (2001). This study identifies a role of dynein in 'stripping' off SAC and other proteins from kinetochores upon microtubule attachment, a fundamental mechanism of inactivation of the SAC signal. ArticleCASPubMedPubMed Central Google Scholar
Wojcik, E. et al. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nature Cell Biol.3, 1001–1007 (2001). ArticleCASPubMed Google Scholar
Tai, C. Y., Dujardin, D. L., Faulkner, N. E. & Vallee, R. B. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J. Cell Biol.156, 959–968 (2002). CASPubMedPubMed Central Google Scholar
Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell112, 407–421 (2003). ArticleCASPubMed Google Scholar
Maiato, H., Deluca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore–microtubule interface. J. Cell Sci.117, 5461–5477 (2004). ArticleCASPubMed Google Scholar
Howell, B. J., Hoffman, D. B., Fang, G., Murray, A. W. & Salmon, E. D. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J. Cell Biol.150, 1233–1250 (2000). The first, eye-opening study to show that Mad2 cycles rapidly on and off kinetochores. ArticleCASPubMedPubMed Central Google Scholar
Howell, B. J. et al. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr. Biol.14, 953–964 (2004). An extension of reference 50 to several other SAC proteins. ArticleCASPubMed Google Scholar
Kallio, M. J., Beardmore, V. A., Weinstein, J. & Gorbsky, G. J. Rapid microtubule-independent dynamics of Cdc20 at kinetochores and centrosomes in mammalian cells. J. Cell Biol.158, 841–847 (2002). ArticleCASPubMedPubMed Central Google Scholar
Shah, J. V. et al. Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing. Curr. Biol.14, 942–952 (2004). An important demonstration that the kinetochore Mad2 exists in two non-exchanging pools. CASPubMed Google Scholar
Vink, M. et al. In vitro FRAP identifies the minimal requirements for Mad2 kinetochore dynamics. Curr. Biol.16, 755–766 (2006). This study reports the reconstitutionin vitrousing recombinant material of faithful Mad2 kinetochore dynamics. ArticleCASPubMed Google Scholar
Hardwick, K. G. et al. Lesions in many different spindle components activate the spindle checkpoint in the budding yeast Saccharomyces cerevisiae. Genetics152, 509–518 (1999). CASPubMedPubMed Central Google Scholar
Chan, G. K., Liu, S. T. & Yen, T. J. Kinetochore structure and function. Trends Cell Biol.15, 589–598 (2005). ArticleCASPubMed Google Scholar
Irniger, S. Preventing fatal destruction: inhibitors of the anaphase-promoting complex in meiosis. Cell Cycle5, 405–415 (2006). ArticleCASPubMed Google Scholar
McIntosh, J. R. Structural and mechanical control of mitotic progression. Cold Spring Harb. Symp. Quant. Biol.56, 613–619 (1991). ArticleCASPubMed Google Scholar
Gorbsky, G. J. Kinetochores, microtubules and the metaphase checkpoint. Trends Cell Biol.5, 143–148 (1995). ArticleCASPubMed Google Scholar
Pangilinan, F. & Spencer, F. Abnormal kinetochore structure activates the spindle assembly checkpoint in budding yeast. Mol. Biol. Cell7, 1195–1208 (1996). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. & Burke, D. J. Checkpoint genes required to delay cell division in response to nocodazole respond to impaired kinetochore function in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol.15, 6838–6844 (1995). ArticleCASPubMedPubMed Central Google Scholar
Spencer, F. & Hieter, P. Centromere DNA mutations induce a mitotic delay in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA89, 8908–8912 (1992). ArticleCASPubMedPubMed Central Google Scholar
Goh, P. Y. & Kilmartin, J. V. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol.121, 503–512 (1993). ArticleCASPubMed Google Scholar
Gardner, R. D. et al. The spindle checkpoint of the yeast Saccharomyces cerevisiae requires kinetochore function and maps to the CBF3 domain. Genetics157, 1493–1502 (2001). CASPubMedPubMed Central Google Scholar
Gorbsky, G. J. & Ricketts, W. A. Differential expression of a phosphoepitope at the kinetochores of moving chromosomes. J. Cell Biol.122, 1311–1321 (1993). ArticleCASPubMed Google Scholar
Rieder, C. L., Schultz, A., Cole, R. & Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol.127, 1301–1310 (1994). ArticleCASPubMed Google Scholar
Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol.130, 941–948 (1995). A must-read, classic, cell-biology paper showing that a single unattached kinetochore is sufficient to maintain the checkpoint signal. ArticleCASPubMed Google Scholar
Nicklas, R. B., Ward, S. C. & Gorbsky, G. J. Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J. Cell Biol.130, 929–939 (1995). Another classic cell-biology study demonstrating that kinetochore chemistry is sensitive to the tension applied to kinetochores. ArticleCASPubMed Google Scholar
Taylor, S. S., Ha, E. & McKeon, F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol.142, 1–11 (1998). ArticleCASPubMedPubMed Central Google Scholar
Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell89, 727–735 (1997). ArticleCASPubMed Google Scholar
Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science274, 246–248 (1996). ArticleCASPubMed Google Scholar
Chen, R. H., Waters, J. C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science274, 242–246 (1996). ArticleCASPubMed Google Scholar
Chen, R. H., Shevchenko, A., Mann, M. & Murray, A. W. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol.143, 283–295 (1998). ArticleCASPubMedPubMed Central Google Scholar
Meraldi, P., Draviam, V. M. & Sorger, P. K. Timing and checkpoints in the regulation of mitotic progression. Dev. Cell7, 45–60 (2004). A careful, quantitative analysis of the effects of SAC- and kinetochore-protein depletion on anaphase timing, leading to the presentation of the 'timer' idea. ArticleCASPubMed Google Scholar
McAinsh, A. D., Meraldi, P., Draviam, V. M., Toso, A. & Sorger, P. K. The human kinetochore proteins Nnf1R and Mcm21R are required for accurate chromosome segregation. EMBO J.25, 4033–4049 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhao, Y. & Chen, R. H. Mps1 phosphorylation by MAP kinase is required for kinetochore localization of spindle-checkpoint proteins. Curr. Biol.16, 1764–1769 (2006). ArticleCASPubMed Google Scholar
Meraldi, P., McAinsh, A. D., Rheinbay, E. & Sorger, P. K. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol.7, R23 (2006). ArticleCASPubMedPubMed Central Google Scholar
DeLuca, J. G. & Salmon, E. D. Kinetochores: if you build it, they will come. Curr. Biol.14, R921–R923 (2004). ArticleCASPubMed Google Scholar
Deluca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by hec1. Cell127, 969–982 (2006). ArticleCASPubMed Google Scholar
Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell127, 983–997 (2006). References 80 and 81 define a role for the Ndc80/HEC1 complex in microtubule binding at the kinetochore, a fundamental discovery to understand kinetochore structure and function. ArticleCASPubMed Google Scholar
Liu, S. T., Rattner, J. B., Jablonski, S. A. & Yen, T. J. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol.175, 41–53 (2006). ArticleCASPubMedPubMed Central Google Scholar
Johnson, V. L., Scott, M. I., Holt, S. V., Hussein, D. & Taylor, S. S. Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J. Cell Sci.117, 1577–1589 (2004). ArticleCASPubMed Google Scholar
Clute, P. & Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nature Cell Biol.1, 82–87 (1999). ArticleCASPubMed Google Scholar
Hagting, A. et al. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol.157, 1125–1137 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rieder, C. L. & Maiato, H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell7, 637–651 (2004). ArticleCASPubMed Google Scholar
Waters, J. C., Chen, R. H., Murray, A. W. & Salmon, E. D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol.141, 1181–1191 (1998). An important study demonstrating that the localization of Mad2 to kinetochores is sensitive to microtubule attachment. ArticleCASPubMedPubMed Central Google Scholar
Skoufias, D. A., Andreassen, P. R., Lacroix, F. B., Wilson, L. & Margolis, R. L. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc. Natl Acad. Sci. USA98, 4492–4497 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nicklas, R. B., Waters, J. C., Salmon, E. D. & Ward, S. C. Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J. Cell Sci.114, 4173–4183 (2001). CASPubMed Google Scholar
Pinsky, B. A. & Biggins, S. The spindle checkpoint: tension versus attachment. Trends Cell Biol. (2005).
Tanaka, T. U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase–INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Trends Cell Biol.15, 486–493 (2005). An elegant set of experiments demonstrating that Aurora kinase is required for the correction of syntelic attachment. ArticleCAS Google Scholar
Lampson, M. A., Renduchitala, K., Khodjakov, A. & Kapoor, T. M. Correcting improper chromosome-spindle attachments during cell division. Nature Cell Biol.6, 232–237 (2004). ArticleCASPubMed Google Scholar
Cimini, D. & Degrassi, F. Aneuploidy: a matter of bad connections. Trends Cell Biol.15, 442–451 (2005). ArticleCASPubMed Google Scholar
Zhou, J., Yao, J. & Joshi, H. C. Attachment and tension in the spindle assembly checkpoint. J. Cell Sci.115, 3547–3555 (2002). ArticleCASPubMed Google Scholar
Camasses, A., Bogdanova, A., Shevchenko, A. & Zachariae, W. The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. Mol. Cell12, 87–100 (2003). ArticleCASPubMed Google Scholar
Fang, G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol. Biol. Cell13, 755–766 (2002). ArticleCASPubMedPubMed Central Google Scholar
Davenport, J., Harris, L. D. & Goorha, R. Spindle checkpoint function requires Mad2-dependent Cdc20 binding to the Mad3 homology domain of BubR1. Exp. Cell Res.312, 1831–1842 (2006). ArticleCASPubMed Google Scholar
Chen, R. -H. BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1. J. Cell Biol.158, 487–496 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kramer, E. R., Scheuringer, N., Podtelejnikov, A. V., Mann, M. & Peters, J. M. Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol. Biol. Cell11, 1555–1569 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gillett, E. S., Espelin, C. W. & Sorger, P. K. Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J. Cell Biol.164, 535–546 (2004). ArticleCASPubMedPubMed Central Google Scholar
den Elzen, N. & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol.153, 121–136 (2001). ArticleCASPubMedPubMed Central Google Scholar
Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol.153, 137–148 (2001). ArticleCASPubMedPubMed Central Google Scholar
Doncic, A., Ben-Jacob, E. & Barkai, N. Evaluating putative mechanisms of the mitotic spindle checkpoint. Proc. Natl Acad. Sci. USA102, 6332–6337 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sear, R. P. & Howard, M. Modeling dual pathways for the metazoan spindle assembly checkpoint. Proc. Natl Acad. Sci. USA103, 16758–16763 (2006). ArticleCASPubMedPubMed Central Google Scholar
Acquaviva, C., Herzog, F., Kraft, C. & Pines, J. The anaphase promoting complex/cyclosome is recruited to centromeres by the spindle assembly checkpoint. Nature Cell Biol.6, 892–898 (2004). ArticleCASPubMed Google Scholar
Chan, G. K., Jablonski, S. A., Sudakin, V., Hittle, J. C. & Yen, T. J. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J. Cell Biol.146, 941–954 (1999). ArticleCASPubMedPubMed Central Google Scholar
Luo, X. et al. Structure of the mad2 spindle assembly checkpoint protein and its interaction with cdc20. Nature Struct. Biol.7, 224–229 (2000). ArticleCASPubMed Google Scholar
Luo, X., Tang, Z., Rizo, J. & Yu, H. The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol. Cell9, 59–71 (2002). A structural study showing that Mad2 undergoes a dramatic conformational change upon binding to its ligands. ArticlePubMed Google Scholar
Sironi, L. et al. Crystal structure of the tetrameric Mad1–Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. EMBO J.21, 2496–2506 (2002). Another structural study that reveals an astonishing mechanism of binding based on a comformationally mobile element of Mad2, the safety belt. ArticleCASPubMedPubMed Central Google Scholar
Chen, R. H., Brady, D. M., Smith, D., Murray, A. W. & Hardwick, K. G. The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol. Biol. Cell10, 2607–2618 (1999). ArticleCASPubMedPubMed Central Google Scholar
Luo, X. et al. The Mad2 spindle checkpoint protein has two distinct natively folded states. Nature Struct. Mol. Biol.11, 338–345 (2004). ArticleCAS Google Scholar
Nezi, L. et al. Accumulation of Mad2:Cdc20 complex during spindle checkpoint activation requires binding of open and closed conformers of Mad2 in Saccharomyces cerevisiae. J. Cell Biol.174, 39–51 (2006). ArticleCASPubMedPubMed Central Google Scholar
Murata-Hori, M. & Wang, Y. -L. The kinase activity of Aurora B is required for kinetochore-microtubule interactions during mitosis. Curr. Biol.12, 894–899 (2002). ArticleCASPubMed Google Scholar
Ahonen, L. J. et al. Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores. Curr. Biol.15, 1078–1089 (2005). ArticleCASPubMed Google Scholar
Wong, O. K. & Fang, G. Plx1 is the 3F3/2 kinase responsible for targeting spindle checkpoint proteins to kinetochores. J. Cell Biol.170, 709–719 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mao, Y., Abrieu, A. & Cleveland, D. W. Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell114, 87–98 (2003). ArticleCASPubMed Google Scholar
Lampson, M. A. & Kapoor, T. M. The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nature Cell Biol.7, 93–98 (2005). ArticleCASPubMed Google Scholar
Chan, G. K., Schaar, B. T. & Yen, T. J. Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J. Cell Biol.143, 49–63 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F. & Cleveland, D. W. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biol.2, 484–491 (2000). ArticleCASPubMed Google Scholar
Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D. & Yen, T. J. CENP-E function at kinetochores is essential for chromosome alignment. J. Cell Biol.139, 1373–1382 (1997). ArticleCASPubMedPubMed Central Google Scholar
McEwen, B. F. et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell12, 2776–2789 (2001). ArticleCASPubMedPubMed Central Google Scholar
Weaver, B. A. et al. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J. Cell Biol.162, 551–563 (2003). An important study clarifying that CENP-E is required to sustain checkpoint signalling when there are only one or a few unattached kinetochores. ArticleCASPubMedPubMed Central Google Scholar
Taylor, S. S., Hussein, D., Wang, Y., Elderkin, S. & Morrow, C. J. Kinetochore localisation and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are differentially regulated by spindle events in human cells. J. Cell Sci.114, 4385–4395 (2001). CASPubMed Google Scholar
Tang, Z. et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev. Cell10, 575–585 (2006). ArticleCASPubMed Google Scholar
Tang, Z., Sun, Y., Harley, S. E., Zou, H. & Yu, H. Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. Proc. Natl Acad. Sci. USA101, 18012–18017 (2004). CASPubMedPubMed Central Google Scholar
Watanabe, Y. Shugoshin: guardian spirit at the centromere. Curr. Opin. Cell Biol.17, 590–595 (2005). ArticleCASPubMed Google Scholar
Vaur, S. et al. Control of Shugoshin function during fission-yeast meiosis. Curr. Biol.15, 2263–2270 (2005). ArticleCASPubMed Google Scholar
Chen, R. H. Phosphorylation and activation of Bub1 on unattached chromosomes facilitate the spindle checkpoint. EMBO J.23, 3113–3121 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yamaguchi, S., Decottignies, A. & Nurse, P. Function of Cdc2p-dependent Bub1p phosphorylation and Bub1p kinase activity in the mitotic and meiotic spindle checkpoint. EMBO J.22, 1075–1087 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yu, H. & Tang, Z. Bub1 multitasking in mitosis. Cell Cycle4, 262–265 (2005). CASPubMed Google Scholar
Kitajima, T. S., Hauf, S., Ohsugi, M., Yamamoto, T. & Watanabe, Y. Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr. Biol.15, 353–359 (2005). ArticleCASPubMed Google Scholar
Indjeian, V. B., Stern, B. M. & Murray, A. W. The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science307, 130–133 (2005). ArticleCASPubMed Google Scholar
Liu, S. -T. et al. Human MPS1 kinase is required for mitotic arrest induced by the loss of CENP-E from kinetochores. Mol. Biol. Cell14, 1638–1651 (2003). ArticleCASPubMedPubMed Central Google Scholar
Martin-Lluesma, S., Stucke, V. M. & Nigg, E. A. Role of hec1 in spindle checkpoint signaling and kinetochore recruitment of mad1/mad2. Science297, 2267–2270 (2002). ArticleCASPubMed Google Scholar
Campbell, M. S., Chan, G. K. & Yen, T. J. Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. J. Cell Sci.114, 953–963 (2001). CASPubMed Google Scholar
Vader, G., Medema, R. H. & Lens, S. M. The chromosomal passenger complex: guiding Aurora-B through mitosis. J. Cell Biol.173, 833–837 (2006). ArticleCASPubMedPubMed Central Google Scholar
Carmena, M. & Earnshaw, W. C. The cellular geography of aurora kinases. Nature Rev. Mol. Cell Biol.4, 842–854 (2003). ArticleCAS Google Scholar
Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev.15, 3118–3129 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pinsky, B. A., Kung, C., Shokat, K. M. & Biggins, S. The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nature Cell Biol.8, 78–83 (2006). ArticleCASPubMed Google Scholar
Buffin, E., Lefebvre, C., Huang, J., Gagou, M. E. & Karess, R. E. Recruitment of mad2 to the kinetochore requires the rod/zw10 complex. Curr. Biol.15, 856–861 (2005). ArticleCASPubMed Google Scholar
Liu, S. T. et al. Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nature Cell Biol.5, 341–345 (2003). ArticleCASPubMed Google Scholar
DeLuca, J. G. et al. Nuf2 and hec1 are required for retention of the checkpoint proteins mad1 and mad2 to kinetochores. Curr. Biol.13, 2103–2109 (2003). ArticleCASPubMed Google Scholar
Kops, G. J. et al. ZW10 links mitotic checkpoint signaling to the structural kinetochore. J. Cell Biol.169, 49–60 (2005). CASPubMedPubMed Central Google Scholar
Wang, H. et al. Human zwint-1 specifies localization of zeste white 10 to kinetochores and is essential for mitotic checkpoint signaling. J. Biol. Chem.279, 54590–54598 (2004). ArticleCASPubMed Google Scholar
Lin, Y. T., Chen, Y., Wu, G. & Lee, W. H. Hec1 sequentially recruits Zwint-1 and ZW10 to kinetochores for faithful chromosome segregation and spindle checkpoint control. Oncogene25, 6901–6914 (2006). ArticleCASPubMed Google Scholar
DeLuca, J. G., Moree, B., Hickey, J. M., Kilmartin, J. V. & Salmon, E. D. hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J. Cell Biol.159, 549–555 (2002). ArticleCASPubMedPubMed Central Google Scholar
King, J. M., Hays, T. S. & Nicklas, R. B. Dynein is a transient kinetochore component whose binding is regulated by microtubule attachment, not tension. J. Cell Biol.151, 739–748 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hoffman, D. B., Pearson, C. G., Yen, T. J., Howell, B. J. & Salmon, E. D. Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol. Biol. Cell12, 1995–2009 (2001). ArticleCASPubMedPubMed Central Google Scholar
Basto, R. et al. In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis. Curr. Biol.14, 56–61 (2004). ArticleCASPubMed Google Scholar
Tong, A. H. et al. Global mapping of the yeast genetic interaction network. Science303, 808–813 (2004). ArticleCASPubMed Google Scholar
Wassmann, K., Liberal, V. & Benezra, R. Mad2 phosphorylation regulates its association with Mad1 and the APC/C. EMBO J.22, 797–806 (2003). ArticleCASPubMedPubMed Central Google Scholar
de Gramont, A., Ganier, O. & Cohen-Fix, O. Before and after the spindle assembly chekpoint. Cell Cycle5, 2168–2171 (2006). ArticleCASPubMed Google Scholar
Palframan, W. J., Meehl, J. B., Jaspersen, S. L., Winey, M. & Murray, A. W. Anaphase inactivation of the spindle checkpoint. Science313, 680–684 (2006). ArticleCASPubMed Google Scholar
Qi, W. & Yu, H. KEN-box-dependent degradation of the bub1 spindle checkpoint kinase by the anaphase-promoting complex/cyclosome. J. Biol. Chem.282, 3672–3679 (2007). ArticleCASPubMed Google Scholar
Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol.16, 1194–1200 (2006). ArticleCASPubMedPubMed Central Google Scholar
McCleland, M. L. et al. The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev.17, 101–114 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kops, G. J., Weaver, B. A. & Cleveland, D. W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nature Rev. Cancer5, 773–785 (2005). This review discusses that systematic SAC inactivation leads to lethality of cancer cells, suggesting that the SAC might be regarded as a possible target for anti-tumour therapy. ArticleCAS Google Scholar
Tighe, A., Johnson, V. L., Albertella, M. & Taylor, S. S. Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep.2, 609–614 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sotillo, R. et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell11, 9–23 (2007). ArticleCASPubMed Google Scholar
Kops, G. J., Foltz, D. R. & Cleveland, D. W. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc. Natl Acad. Sci. USA101, 8699–8704 (2004). ArticleCASPubMedPubMed Central Google Scholar
Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell11, 25–36 (2007). ArticleCASPubMed Google Scholar
Girdler, F. et al. Validating Aurora B as an anti-cancer drug target. J. Cell Sci.119, 3664–3675 (2006). ArticleCASPubMed Google Scholar
Keen, N. & Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nature Rev. Cancer4, 927–936 (2004). ArticleCAS Google Scholar
Wang, X. et al. The mitotic checkpoint protein hBUB3 and the mRNA export factor hRAE1 interact with GLE2p-binding sequence (GLEBS)-containing proteins. J. Biol. Chem.276, 26559–26567 (2001). ArticleCASPubMed Google Scholar
Okada, M. et al. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature Cell Biol.8, 446–457 (2006). ArticleCASPubMed Google Scholar
Foltz, D. R. et al. The human CENP-A centromeric nucleosome-associated complex. Nature Cell Biol8, 458–469 (2006). ArticleCASPubMed Google Scholar
Cimini, D., Wan, X., Hirel, C. B. & Salmon, E. D. Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr. Biol.16, 1711–1718 (2006). ArticleCASPubMed Google Scholar
Knowlton, A. L., Lan, W. & Stukenberg, P. T. Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr. Biol.16, 1705–1710 (2006). ArticleCASPubMed Google Scholar
Tanaka, T. U., Stark, M. J. & Tanaka, K. Kinetochore capture and bi-orientation on the mitotic spindle. Nature Rev. Mol. Cell Biol.6, 929–942 (2005). ArticleCAS Google Scholar