Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations (original) (raw)
Jentsch, S. & Rumpf, S. Cdc48 (p97): A ‘molecular gearbox’ in the ubiquitin pathway? Trends Biochem. Sci.32, 6–11 (2007). ArticleCAS Google Scholar
Meyer, H. & Popp, O. Role(s) of Cdc48/p97 in mitosis. Biochem. Soc. Trans.36, 126–130 (2008). ArticleCAS Google Scholar
Ye, Y. Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase. J. Struct. Biol.156, 29–40 (2006). ArticleCAS Google Scholar
Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet.36, 377–381 (2004). ArticleCAS Google Scholar
Weihl, C. C., Pestronk, A. & Kimonis, V. E. Valosin-containing protein disease: inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia. Neuromuscul. Disord.19, 308–315 (2009). Article Google Scholar
Hayer, A. et al. Caveolin-1 is ubiquitinated and targeted to intraluminal vesicles in endolysosomes for degradation. J. Cell Biol.191, 615–629 (2010). ArticleCAS Google Scholar
Jarosch, E., Geiss-Friedlander, R., Meusser, B., Walter, J. & Sommer, T. Protein dislocation from the endoplasmic reticulum–pulling out the suspect. Traffic3, 530–536 (2002). ArticleCAS Google Scholar
Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian Ufd1 and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J.19, 2181–2192 (2000). ArticleCAS Google Scholar
Schuberth, C. & Buchberger, A. UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97. Cell Mol. Life Sci.65, 2360–2371 (2008). ArticleCAS Google Scholar
Alexandru, G. et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1_α_ turnover. Cell134, 804–816 (2008). ArticleCAS Google Scholar
Tresse, E. et al. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy6, 217–227 (2010). ArticleCAS Google Scholar
Ju, J. S. et al. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol.187, 875–888 (2009). ArticleCAS Google Scholar
Janiesch, P. C. et al. The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy. Nat. Cell Biol.9, 379–390 (2007). ArticleCAS Google Scholar
Ju, J. S., Miller, S. E., Hanson, P. I. & Weihl, C. C. Impaired protein aggregate handling and clearance underlie the pathogenesis of p97/VCP associated disease. J. Biol. Chem.283, 30289–30299 (2008). ArticleCAS Google Scholar
Fernandez-Saiz, V. & Buchberger, A. Imbalances in p97 co-factor interactions in human proteinopathy. EMBO Rep.11, 479–485 (2010). ArticleCAS Google Scholar
Weihl, C. C., Dalal, S., Pestronk, A. & Hanson, P. I. Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum. Mol. Genet.15, 189–199 (2006). ArticleCAS Google Scholar
Ye, Y., Meyer, H. H. & Rapoport, T. A. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol.162, 71–84 (2003). ArticleCAS Google Scholar
Ramadan, K. et al. Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature450, 1258–1262 (2007). ArticleCAS Google Scholar
Keller, A., Eng, J., Zhang, N., Li, X. J. & Aebersold, R. A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol.1, 0017 (2005). Article Google Scholar
Iwawaki, T., Akai, R., Kohno, K. & Miura, M. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat. Med.10, 98–102 (2004). ArticleCAS Google Scholar
Madsen, L. et al. Ubxd1 is a novel co-factor of the human p97 ATPase. Int. J. Biochem. Cell Biol.40, 2927–2942 (2008). ArticleCAS Google Scholar
Parton, R. G. & Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol.8, 185–194 (2007). ArticleCAS Google Scholar
Hayer, A., Stoeber, M., Bissig, C. & Helenius, A. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic11, 361–382 (2010). ArticleCAS Google Scholar
Scheiffele, P. et al. Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J. Cell Biol.140, 795–806 (1998). ArticleCAS Google Scholar
Monier, S. et al. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell6, 911–927 (1995). ArticleCAS Google Scholar
Tagawa, A. et al. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J. Cell Biol.170, 769–779 (2005). ArticleCAS Google Scholar
Mundy, D. I., Machleidt, T., Ying, Y. S., Anderson, R. G. & Bloom, G. S. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J. Cell Sci.115, 4327–4339 (2002). ArticleCAS Google Scholar
Haglund, K., Di Fiore, P. P. & Dikic, I. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci.28, 598–603 (2003). ArticleCAS Google Scholar
Sargiacomo, M. et al. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc. Natl Acad. Sci. USA92, 9407–9411 (1995). ArticleCAS Google Scholar
Pol, A. et al. Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol. Biol. Cell16, 2091–2105 (2005). ArticleCAS Google Scholar
Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell107, 667–677 (2001). ArticleCAS Google Scholar
Lee, H. et al. Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (−/−) null mice show mammary epithelial cell hyperplasia. Am. J. Pathol.161, 1357–1369 (2002). ArticleCAS Google Scholar
Chou, T. F. et al. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc. Natl Acad. Sci. USA108, 4834–4839 (2011). ArticleCAS Google Scholar
Ren, J., Pashkova, N., Winistorfer, S. & Piper, R. C. DOA1/UFD3 plays a role in sorting ubiquitinated membrane proteins into multivesicular bodies. J. Biol. Chem.283, 21599–21611 (2008). ArticleCAS Google Scholar
Weihl, C. C., Miller, S. E., Hanson, P. I. & Pestronk, A. Transgenic expression of inclusion body myopathy associated mutant p97/VCP causes weakness and ubiquitinated protein inclusions in mice. Hum. Mol. Genet.16, 919–928 (2007). ArticleCAS Google Scholar
Minetti, C. et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat. Genet.18, 365–368 (1998). ArticleCAS Google Scholar
Goode, A. & Layfield, R. Recent advances in understanding the molecular basis of Paget disease of bone. J. Clin. Pathol.63, 199–203 (2010). ArticleCAS Google Scholar
Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet.37, 806–808 (2005). ArticleCAS Google Scholar
Bolte, S. & Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc.224, 213–232 (2006). ArticleCAS Google Scholar
MacLean, B., Eng, J. K., Beavis, R. C. & McIntosh, M. General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics22, 2830–2832 (2006). ArticleCAS Google Scholar