VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling (original) (raw)
Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature380, 438–442 (1996). Article Google Scholar
Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature380, 435–439 (1996). ArticleCAS Google Scholar
Shalaby, F. et al. Failure of blood island formation and vasculogenesis in Flk-1-deficient mice. Nature376, 62–66 (1995). ArticleCAS Google Scholar
Gille, H. et al. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J. Biol. Chem.276, 3222–3230 (2001). ArticleCAS Google Scholar
Tammela, T. & Alitalo, K. Lymphangiogenesis: molecular mechanisms and future promise. Cell140, 460–476 (2010). ArticleCAS Google Scholar
Dixelius, J. et al. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J. Biol. Chem.278, 40973–40979 (2003). ArticleCAS Google Scholar
Nilsson, I. et al. VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J.29, 1377–1388 (2010). ArticleCAS Google Scholar
Dumont, D. J. et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science282, 946–949 (1998). ArticleCAS Google Scholar
Covassin, L. D., Villefranc, J. A., Kacergis, M. C., Weinstein, B. M. & Lawson, N. D. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc. Natl Acad. Sci. USA103, 6554–6559 (2006). ArticleCAS Google Scholar
Kaipainen, A. et al. Expression of the _fms_-like tyrosine kinase FLT4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl Acad. Sci. USA92, 3566–3570 (1995). ArticleCAS Google Scholar
Lohela, M., Helotera, H., Haiko, P., Dumont, D. J. & Alitalo, K. Transgenic induction of vascular endothelial growth factor-C is strongly angiogenic in mouse embryos but leads to persistent lymphatic hyperplasia in adult tissues. Am. J. Pathol.173, 1891–1901 (2008). ArticleCAS Google Scholar
Paavonen, K., Puolakkainen, P., Jussila, L., Jahkola, T. & Alitalo, K. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am. J. Pathol.156, 1499–1504 (2000). ArticleCAS Google Scholar
Valtola, R. et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol.154, 1381–1390 (1999). ArticleCAS Google Scholar
Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature454, 656–660 (2008). ArticleCAS Google Scholar
Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol.5, 74–80 (2004). ArticleCAS Google Scholar
Baldwin, M. E. et al. Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol. Cell Biol.25, 2441–2449 (2005). ArticleCAS Google Scholar
Haiko, P. et al. Deletion of vascular endothelial growth factor C (VEGF-C) and VEGF-D is not equivalent to VEGF receptor 3 deletion in mouse embryos. Mol. Cell Biol.28, 4843–4850 (2008). ArticleCAS Google Scholar
Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol.161, 1163–1177 (2003). ArticleCAS Google Scholar
Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature445, 776–780 (2007). ArticleCAS Google Scholar
Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA104, 3225–3230 (2007). ArticleCAS Google Scholar
Roca, C. & Adams, R. H. Regulation of vascular morphogenesis by Notch signaling. Genes Dev.21, 2511–2524 (2007). ArticleCAS Google Scholar
Kamei, M. et al. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature442, 453–456 (2006). ArticleCAS Google Scholar
Strilic, B. et al. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev. Cell17, 505–515 (2009). ArticleCAS Google Scholar
Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood116, 829–840 (2010). ArticleCAS Google Scholar
Kubota, Y. et al. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J. Exp. Med.206, 1089–1102 (2009). ArticleCAS Google Scholar
Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell141, 39–51 (2010). ArticleCAS Google Scholar
Siekmann, A. F. & Lawson, N. D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature445, 781–784 (2007). ArticleCAS Google Scholar
Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell137, 1124–1135 (2009). ArticleCAS Google Scholar
Claxton, S. et al. Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis46, 74–80 (2008). ArticleCAS Google Scholar
Le Bras, B. et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat. Neurosci.9, 340–348 (2006). ArticleCAS Google Scholar
Skobe, M. et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am. J. Pathol.159, 893–903 (2001). ArticleCAS Google Scholar
Karkkainen, M. J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl Acad. Sci. USA98, 12677–12682 (2001). ArticleCAS Google Scholar
Galvagni, F. et al. Endothelial cell adhesion to the extracellular matrix induces c-Src-dependent VEGFR-3 phosphorylation without the activation of the receptor intrinsic kinase activity. Circ. Res.106, 1839–1848 (2010). ArticleCAS Google Scholar
Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol.12, 943–953 (2010). ArticleCAS Google Scholar
Wiktor-Jedrzejczak, W. W., Ahmed, A., Szczylik, C. & Skelly, R. R. Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation. J. Exp. Med.156, 1516–1527 (1982). ArticleCAS Google Scholar
Takeshita, K. et al. Critical role of endothelial Notch1 signaling in postnatal angiogenesis. Circ. Res.100, 70–78 (2007). ArticleCAS Google Scholar
Yamamizu, K. et al. Convergence of Notch and β-catenin signaling induces arterial fate in vascular progenitors. J. Cell Biol.189, 325–338 (2010). ArticleCAS Google Scholar
Hayashi, H. & Kume, T. Foxc transcription factors directly regulate Dll4 and Hey2 expression by interacting with the VEGF-Notch signaling pathways in endothelial cells. PLoS One3, e2401 (2008). ArticleCAS Google Scholar
Burgering, B. M. A brief introduction to FOXOlogy. Oncogene27, 2258–2262 (2008). ArticleCAS Google Scholar
Petrova, T. V. et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat. Med.10, 974–981 (2004). ArticleCAS Google Scholar
Norrmen, C. et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J. Cell Biol.185, 439–457 (2009). ArticleCAS Google Scholar
Laakkonen, P. et al. Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res.67, 593–599 (2007). ArticleCAS Google Scholar
Davis, G. E. & Senger, D. R. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res.97, 1093–1107 (2005). ArticleCAS Google Scholar
Zhang, L. et al. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res.20, 1319–1331 (2010). ArticleCAS Google Scholar
Nilsson, I. et al. VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J.29, 1377–1388 (2010). ArticleCAS Google Scholar
Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature465, 483–486 (2010). ArticleCAS Google Scholar
Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature465, 487–491 (2010). ArticleCAS Google Scholar
Saharinen, P. et al. Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. Genes Dev.24, 875–880 (2010). ArticleCAS Google Scholar
Whitaker, G. B., Limberg, B. J. & Rosenbaum, J. S. Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121). J. Biol. Chem.276, 25520–25531 (2001). ArticleCAS Google Scholar
Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell98, 147–157 (1999). ArticleCAS Google Scholar
Shawber, C. J. et al. Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J. Clin. Invest.117, 3369–3382 (2007). ArticleCAS Google Scholar
Ober, E. A. et al. Vegfc is required for vascular development and endoderm morphogenesis in zebrafish. EMBO Rep.5, 78–84 (2004). ArticleCAS Google Scholar
De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med.9, 789–795 (2003). ArticleCAS Google Scholar
Mäkinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C receptor VEGFR-3. EMBO J.20, 4762–4773 (2001). Article Google Scholar
Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet.21, 70–71 (1999). ArticleCAS Google Scholar
Iida, K. et al. Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development124, 4627–4638 (1997). PubMedCAS Google Scholar
Pytowski, B. et al. Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J. Natl Cancer Inst.97, 14–21 (2005). ArticleCAS Google Scholar
Prewett, M. et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res.59, 5209–5218 (1999). PubMedCAS Google Scholar
Weijzen, S. et al. The Notch ligand Jagged-1 is able to induce maturation of monocyte-derived human dendritic cells. J. Immunol.169, 4273–4278 (2002). ArticleCAS Google Scholar
Tammela, T. et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood105, 4642–4648 (2005). ArticleCAS Google Scholar
Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest.115, 247–257 (2005). ArticleCAS Google Scholar
Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev.16, 2684–2698 (2002). ArticleCAS Google Scholar
Karpanen, T. et al. Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am. J. Pathol.169, 708–718 (2006). ArticleCAS Google Scholar
Zheng, W. et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood118, 1154–1162 (2011). ArticleCAS Google Scholar
Tvorogov, D. et al. Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell18, 630–640 (2010). ArticleCAS Google Scholar
Jussila, L. et al. Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Res.58, 1599–1604 (1998). PubMedCAS Google Scholar
Ghalamkarpour, A. et al. Recessive primary congenital lymphoedema caused by a VEGFR3 mutation. J. Med. Genet.46, 399–404 (2009). ArticleCAS Google Scholar
Persaud, K. et al. Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. J. Cell Sci.117, 2745–2756 (2004). ArticleCAS Google Scholar
Karpanen, T. et al. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J.20, 1462–1472 (2006). ArticleCAS Google Scholar
Jakobsson, L. et al. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev. Cell10, 625–634 (2006). ArticleCAS Google Scholar
Lobov, I. B. et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl Acad. Sci. USA104, 3219–3224 (2007). ArticleCAS Google Scholar