Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation (original) (raw)
Lemon, B. & Tjian, R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev.14, 2551–2569 (2000). ArticleCAS Google Scholar
Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature416, 499–506 (2002). ArticleCAS Google Scholar
Orphanides, G. & Reinberg, D. A unified theory of gene expression. Cell108, 439–451 (2002). ArticleCAS Google Scholar
McNally, J. G., Muller, W. G., Walker, D., Wolford, R. & Hager, G. L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science287, 1262–1265 (2000). ArticleCAS Google Scholar
Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol.135, 1685–1700 (1996). ArticleCAS Google Scholar
Tumbar, T., Sudlow, G. & Belmont, A. S. Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J. Cell Biol.145, 1341–1354 (1999). ArticleCAS Google Scholar
Yao, J., Munson, K. M., Webb, W. W. & Lis, J. T. Dynamics of heat shock factor association with native gene loci in living cells. Nature442, 1050–1053 (2006). ArticleCAS Google Scholar
Janicki, S. M. et al. From silencing to gene expression: real-time analysis in single cells. Cell116, 683–698 (2004). ArticleCAS Google Scholar
Ben-Ari, Y. et al. The life of an mRNA in space and time. J. Cell Sci.123, 1761–1774 (2010). ArticleCAS Google Scholar
Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol.10, 192–206 (2009). ArticleCAS Google Scholar
Sarge, K. D. & Park-Sarge, O. K. Gene bookmarking: keeping the pages open. Trends Biochem. Sci.30, 605–610 (2005). ArticleCAS Google Scholar
Sarge, K. D. & Park-Sarge, O. K. Mitotic bookmarking of formerly active genes: keeping epigenetic memories from fading. Cell Cycle8, 818–823 (2009). ArticleCAS Google Scholar
Zaidi, S. K. et al. Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat. Rev. Genet.11, 583–589 (2010). ArticleCAS Google Scholar
Rafalska-Metcalf, I. U., Powers, S. L., Joo, L. M., LeRoy, G. & Janicki, S. M. Single cell analysis of transcriptional activation dynamics. PLoS One5, e10272 (2010). Article Google Scholar
Metivier, R. et al. Estrogen receptor-α directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell115, 751–763 (2003). ArticleCAS Google Scholar
Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol.14, 796–806 (2007). ArticleCAS Google Scholar
Kumaran, R. I. & Spector, D. L. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J. Cell Biol.180, 51–65 (2008). ArticleCAS Google Scholar
Prasanth, K. V., Sacco-Bubulya, P. A., Prasanth, S. G. & Spector, D. L. Sequential entry of components of the gene expression machinery into daughter nuclei. Mol. Biol. Cell14, 1043–1057 (2003). ArticleCAS Google Scholar
Pines, J. & Rieder, C. L. Re-staging mitosis: a contemporary view of mitotic progression. Nat. Cell Biol.3, E3–E6 (2001). ArticleCAS Google Scholar
Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science304, 1797–1800 (2004). ArticleCAS Google Scholar
Yang, Z., He, N. & Zhou, Q. Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression. Mol. Cell Biol.28, 967–976 (2008). ArticleCAS Google Scholar
Valls, E., Sanchez-Molina, S. & Martinez-Balbas, M. A. Role of histone modifications in marking and activating genes through mitosis. J. Biol. Chem.280, 42592–42600 (2005). ArticleCAS Google Scholar
Prescott, D. M. & Bender, M. A. Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. Exp. Cell Res.26, 260–268 (1962). Article Google Scholar
Muramoto, T., Muller, I., Thomas, G., Melvin, A. & Chubb, J. R. Methylation of H3K4 is required for inheritance of active transcriptional states. Curr. Biol.20, 397–406 (2010). ArticleCAS Google Scholar
Dey, A., Nishiyama, A., Karpova, T., McNally, J. & Ozato, K. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol. Biol. Cell20, 4899–4909 (2009). ArticleCAS Google Scholar
Jeppesen, P. Histone acetylation: a possible mechanism for the inheritance of cell memory at mitosis. Bioessays19, 67–74 (1997). ArticleCAS Google Scholar
Zippo, A. et al. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell138, 1122–1136 (2009). ArticleCAS Google Scholar
MacDonald, V. E. & Howe, L. J. Histone acetylation: where to go and how to get there. Epigenetics4, 139–143 (2009). ArticleCAS Google Scholar
Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J.27, 406–420 (2008). ArticleCAS Google Scholar
LeRoy, G., Rickards, B. & Flint, S. J. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol. Cell30, 51–60 (2008). ArticleCAS Google Scholar
Kouskouti, A. & Talianidis, I. Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J.24, 347–357 (2005). ArticleCAS Google Scholar
Liu, Y. et al. Structural basis and binding properties of the second bromodomain of Brd4 with acetylated histone tails. Biochemistry47, 6403–6417 (2008). ArticleCAS Google Scholar
Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell19, 535–545 (2005). ArticleCAS Google Scholar
Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell19, 523–534 (2005). ArticleCAS Google Scholar
Masotti, A. et al. Comparison of different commercially available cationic liposome-DNA lipoplexes: Parameters influencing toxicity and transfection efficiency. Colloids Surf. B Biointerfaces68, 136–144 (2009). ArticleCAS Google Scholar
Andrews, J. M., Newbound, G. C. & Lairmore, M. D. Transcriptional modulation of viral reporter gene constructs following induction of the cellular stress response. Nucleic Acids Res.25, 1082–1084 (1997). ArticleCAS Google Scholar
Ip, J. Y. et al. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res.21, 390–401 (2011). ArticleCAS Google Scholar
Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature468, 1067–1073 (2010). ArticleCAS Google Scholar
Dey, A., Chitsaz, F., Abbasi, A., Misteli, T. & Ozato, K. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc. Natl Acad. Sci. USA100, 8758–8763 (2003). ArticleCAS Google Scholar
Larsen, A. & Weintraub, H. An altered DNA conformation detected by S1 nuclease occurs at specific regions in active chick globin chromatin. Cell29, 609–622 (1982). ArticleCAS Google Scholar
Michelotti, E. F., Sanford, S. & Levens, D. Marking of active genes on mitotic chromosomes. Nature388, 895–899 (1997). ArticleCAS Google Scholar
Marushige, K. Activation of chromatin by acetylation of histone side chains. Proc. Natl Acad. Sci. USA73, 3937–3941 (1976). ArticleCAS Google Scholar
Eskeland, R., Freyer, E., Leeb, M., Wutz, A. & Bickmore, W. A. Histone acetylation and the maintenance of chromatin compaction by polycomb repressive complexes. Cold Spring Harb. Symp. Quant. Biol.75, 71–78 (2010). ArticleCAS Google Scholar
Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell38, 452–464 (2010). ArticleCAS Google Scholar
Mochizuki, K. et al. The bromodomain protein Brd4 stimulates G1 gene transcription and promotes progression to S phase. J. Biol. Chem.283, 9040–9048 (2008). ArticleCAS Google Scholar
Blobel, G. A. et al. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol. Cell36, 970–983 (2009). ArticleCAS Google Scholar
Kanno, T. et al. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell13, 33–43 (2004). ArticleCAS Google Scholar
Umehara, T. et al. Structural basis for acetylated histone H4 recognition by the human BRD2 bromodomain. J. Biol. Chem.285, 7610–7618 (2010). ArticleCAS Google Scholar
Umehara, T. et al. Structural implications for K5/K12-di-acetylated histone H4 recognition by the second bromodomain of BRD2. FEBS Lett.584, 3901–3908 (2010). ArticleCAS Google Scholar
Bisgrove, D. A., Mahmoudi, T., Henklein, P. & Verdin, E. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc. Natl Acad. Sci. USA104, 13690–13695 (2007). ArticleCAS Google Scholar
Wu, S. Y. & Chiang, C. M. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J. Biol. Chem.282, 13141–13145 (2007). ArticleCAS Google Scholar
Chen, Y. C., Kappel, C., Beaudouin, J., Eils, R. & Spector, D. L. Live cell dynamics of promyelocytic leukemia nuclear bodies upon entry into and exit from mitosis. Mol. Biol. Cell19, 3147–3162 (2008). ArticleCAS Google Scholar
Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol.189, 777–782 (2010). ArticleCAS Google Scholar
Mao, Y. S. et al. Essential and unique roles of PIP5K-γ and −α in Fcγ receptor-mediated phagocytosis. J. Cell Biol.184, 281–296 (2009). ArticleCAS Google Scholar
Steger, D. J. et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell Biol.28, 2825–2839 (2008). ArticleCAS Google Scholar