Epigenetic inheritance during the cell cycle (original) (raw)
Riggs, A. D., Martiennssen, R. A. & Russo, V. E. A. in Epigenetic Mechanisms of Gene Regulation 1–4 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1996). Google Scholar
Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science293, 1098–1102 (2001). ArticleCASPubMed Google Scholar
Loyola, A. & Almouzni, G. Marking histone H3 variants: how, when and why? Trends Biochem. Sci.32, 425–433 (2007). ArticleCASPubMed Google Scholar
Corpet, A. & Almouzni, G. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol.19, 29–41 (2008). ArticlePubMedCAS Google Scholar
Groth, A., Rocha, W., Verreault, A. & Almouzni, G. Chromatin challenges during DNA replication and repair. Cell128, 721–733 (2007). ArticleCASPubMed Google Scholar
Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature171, 737–738 (1953). ArticleCASPubMed Google Scholar
DePamphilis, M. L. (ed.) DNA Replication and Human Disease (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2006). Google Scholar
Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell129, 665–679 (2007). ArticleCASPubMed Google Scholar
Alberts, B. Molecular Biology of the Cell (Garland Science Publishing, London, 2007). Book Google Scholar
Zhang, Z., Shibahara, K. & Stillman, B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature408, 221–225 (2000). ArticleCASPubMed Google Scholar
Henderson, D. S., Banga, S. S., Grigliatti, T. A. & Boyd, J. B. Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J.13, 1450–1459 (1994). ArticleCASPubMedPubMed Central Google Scholar
Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell96, 575–585 (1999). ArticleCASPubMed Google Scholar
Moggs, J. G. et al. A CAF-1–PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol. Cell. Biol.20, 1206–1218 (2000). ArticleCASPubMedPubMed Central Google Scholar
Groth, A. et al. Regulation of replication fork progression through histone supply and demand. Science318, 1928–1931 (2007). Shows that the histone H3 chaperone ASF1 exists in a complex with the putative replicative helicase and suggests that ASF1 handles both parental and new histones at the replication fork. ArticleCASPubMed Google Scholar
Bestor, T. H. & Ingram, V. M. Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl Acad. Sci. USA80, 5559–5563 (1983). ArticleCASPubMedPubMed Central Google Scholar
Hermann, A., Goyal, R. & Jeltsch, A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J. Biol. Chem.279, 48350–48359 (2004). ArticleCASPubMed Google Scholar
Chuang, L. S. et al. Human DNA-(cytosine-5) methyltransferase–PCNA complex as a target for p21WAF1. Science277, 1996–2000 (1997). ArticleCASPubMed Google Scholar
Pradhan, S., Bacolla, A., Wells, R. D. & Roberts, R. J. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem.274, 33002–33010 (1999). ArticleCASPubMed Google Scholar
Spada, F. et al. DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. J. Cell Biol.176, 565–571 (2007). ArticleCASPubMedPubMed Central Google Scholar
Schermelleh, L. et al. Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res.35, 4301–4312 (2007). ArticleCASPubMedPubMed Central Google Scholar
Woo, H. R., Pontes, O., Pikaard, C. S. & Richards, E. J. VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev.21, 267–277 (2007). ArticleCASPubMedPubMed Central Google Scholar
Unoki, M., Nishidate, T. & Nakamura, Y. ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene23, 7601–7610 (2004). ArticleCASPubMed Google Scholar
Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature450, 908–912 (2007). ArticleCASPubMed Google Scholar
Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science317, 1760–1764 (2007). The work reported in references 30, 32 and 33 identified the SRA-domain-containing protein NP95 and its homologue inA. thalianaas essential factors that bind to hemimethylated DNA and are required for faithful DNA methylation inheritance. ArticleCASPubMed Google Scholar
Arita, K., Ariyoshi, M., Tochio, H., Nakamura, Y. & Shirakawa, M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature455, 818–821 (2008). ArticleCASPubMed Google Scholar
Avvakumov, G. V. et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature455, 822–825 (2008). ArticleCASPubMed Google Scholar
Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69, 915–926 (1992). ArticleCASPubMed Google Scholar
Jeddeloh, J. A., Stokes, T. L. & Richards, E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet.22, 94–97 (1999). ArticleCASPubMed Google Scholar
Brzeski, J. & Jerzmanowski, A. Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors. J. Biol. Chem.278, 823–828 (2003). ArticleCASPubMed Google Scholar
Dennis, K., Fan, T., Geiman, T., Yan, Q. & Muegge, K. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev.15, 2940–2944 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhang, F., Pomerantz, J. H., Sen, G., Palermo, A. T. & Blau, H. M. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons. Proc. Natl Acad. Sci. USA104, 4395–4400 (2007). ArticleCASPubMedPubMed Central Google Scholar
Metivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature452, 45–50 (2008). ArticleCASPubMed Google Scholar
Kangaspeska, S. et al. Transient cyclical methylation of promoter DNA. Nature452, 112–115 (2008). ArticleCASPubMed Google Scholar
Gruenbaum, Y., Cedar, H. & Razin, A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature295, 620–622 (1982). ArticleCASPubMed Google Scholar
Kimura, H. & Cook, P. R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol.153, 1341–1353 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jackson, V. & Chalkley, R. A reevaluation of new histone deposition on replicating chromatin. J. Biol. Chem.256, 5095–5103 (1981). ArticleCASPubMed Google Scholar
Polo, S. E. & Almouzni, G. Chromatin assembly: a basic recipe with various flavours. Curr. Opin. Genet. Dev.16, 104–111 (2006). ArticleCASPubMed Google Scholar
De Koning, L., Corpet, A., Haber, J. E. & Almouzni, G. Histone chaperones: an escort network regulating histone traffic. Nature Struct. Mol. Biol.14, 997–1007 (2007). ArticleCAS Google Scholar
Stillman, B. Chromatin assembly during SV40 DNA replication in vitro. Cell45, 555–565 (1986). The first report of chromatin assembly coupledin vitroto DNA replication. ArticleCASPubMed Google Scholar
Smith, S. & Stillman, B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell58, 15–25 (1989). ArticleCASPubMed Google Scholar
Gaillard, P. H. et al. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell86, 887–896 (1996). ArticleCASPubMed Google Scholar
Polo, S. E., Roche, D. & Almouzni, G. New histone incorporation marks sites of UV repair in human cells. Cell127, 481–493 (2006). ArticleCASPubMed Google Scholar
Mello, J. A. et al. Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep.3, 329–334 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. & Allis, C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl Acad. Sci. USA92, 1237–1241 (1995). ArticleCASPubMedPubMed Central Google Scholar
Loyola, A., Bonaldi, T., Roche, D., Imhof, A. & Almouzni, G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell24, 309–316 (2006). ArticleCASPubMed Google Scholar
Masumoto, H., Hawke, D., Kobayashi, R. & Verreault, A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature436, 294–298 (2005). ArticleCASPubMed Google Scholar
Garcia, B. A. et al. Organismal differences in post-translational modifications in histones H3 and H4. J. Biol. Chem.282, 7641–7655 (2007). ArticleCASPubMed Google Scholar
Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell116, 51–61 (2004). Shows that the histone variants H3.1 and H3.3 are assembled into chromatin by distinct histone chaperones and suggests that H3 and H4 are deposited as dimers. ArticleCASPubMed Google Scholar
Baxevanis, A. D., Godfrey, J. E. & Moudrianakis, E. N. Associative behavior of the histone (H3-H4)2 tetramer: dependence on ionic environment. Biochemistry30, 8817–8823 (1991). ArticleCASPubMed Google Scholar
Verreault, A., Kaufman, P. D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell87, 95–104 (1996). ArticleCASPubMed Google Scholar
English, C. M., Adkins, M. W., Carson, J. J., Churchill, M. E. & Tyler, J. K. Structural basis for the histone chaperone activity of Asf1. Cell127, 495–508 (2006). ArticleCASPubMedPubMed Central Google Scholar
Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature446, 338–341 (2007). ArticleCASPubMed Google Scholar
Murzina, N. V. et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure16, 1077–1085 (2008). ArticleCASPubMedPubMed Central Google Scholar
Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Struct. Mol. Biol.14, 1025–1040 (2007). ArticleCAS Google Scholar
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593–599 (2000). ArticleCASPubMed Google Scholar
Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J.18, 1923–1938 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). ArticleCASPubMed Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). References 69 and 70 show that HP1 (Swi6 in fission yeast) binds to methylated H3K9 through its chromodomain and suggest that a self-perpetuating loop contributes to HP1 maintenance. ArticleCASPubMed Google Scholar
Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol.10, 1291–1300 (2008). ArticleCASPubMed Google Scholar
Leffak, I. M., Grainger, R. & Weintraub, H. Conservative assembly and segregation of nucleosomal histones. Cell12, 837–845 (1977). ArticleCASPubMed Google Scholar
Milutinovic, S., Zhuang, Q. & Szyf, M. Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification. J. Biol. Chem.277, 20974–20978 (2002). ArticleCASPubMed Google Scholar
Huen, M. S., Sy, S. M., van Deursen, J. M. & Chen, J. Direct interaction between SET8 and PCNA couples H4-K20 methylation with DNA replication. J. Biol. Chem.283, 11073–11077 (2008). ArticleCASPubMedPubMed Central Google Scholar
Poot, R. A. et al. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nature Cell Biol.6, 1236–1244 (2004). ArticleCASPubMed Google Scholar
Sporbert, A., Gahl, A., Ankerhold, R., Leonhardt, H. & Cardoso, M. C. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol. Cell10, 1355–1365 (2002). ArticleCASPubMed Google Scholar
Taddei, A., Roche, D., Sibarita, J. B., Turner, B. M. & Almouzni, G. Duplication and maintenance of heterochromatin domains. J. Cell Biol.147, 1153–1166 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sarraf, S. A. & Stancheva, I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell15, 595–605 (2004). ArticleCASPubMed Google Scholar
Reese, B. E., Bachman, K. E., Baylin, S. B. & Rountree, M. R. The methyl-CpG binding protein MBD1 interacts with the p150 subunit of chromatin assembly factor 1. Mol. Cell. Biol.23, 3226–3236 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L. & Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genet.24, 88–91 (2000). ArticleCASPubMed Google Scholar
Rountree, M. R., Bachman, K. E. & Baylin, S. B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genet.25, 269–277 (2000). ArticleCASPubMed Google Scholar
Esteve, P. O. et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev.20, 3089–3103 (2006). ArticleCASPubMedPubMed Central Google Scholar
Karagianni, P., Amazit, L., Qin, J. & Wong, J. ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol. Cell. Biol.28, 705–717 (2008). ArticleCASPubMed Google Scholar
Ng, R. K. & Gurdon, J. B. Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nature Cell Biol.10, 102–109 (2008). ArticleCASPubMed Google Scholar
Zweidler, A. in Histone Genes: Structure, Organization and Regulation (eds Stein, G. S. et al.) 339–371 (Wiley, New York, 1984). Google Scholar
Henikoff, S., Furuyama, T. & Ahmad, K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet.20, 320–326 (2004). ArticleCASPubMed Google Scholar
Ahmad, K. & Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell9, 1191–1200 (2002). ArticleCASPubMed Google Scholar
McKittrick, E., Gafken, P. R., Ahmad, K. & Henikoff, S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl Acad. Sci. USA101, 1525–1530 (2004). ArticleCASPubMedPubMed Central Google Scholar
Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nature Rev. Genet.9, 15–26 (2008). ArticleCASPubMed Google Scholar
Ray-Gallet, D. et al. HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol. Cell9, 1091–1100 (2002). ArticleCASPubMed Google Scholar
Cleveland, D. W., Mao, Y. & Sullivan, K. F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell112, 407–421 (2003). ArticleCASPubMed Google Scholar
Allshire, R. C. & Karpen, G. H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nature Rev. Genet.9, 923–937 (2008). ArticleCASPubMed Google Scholar
Shelby, R. D., Monier, K. & Sullivan, K. F. Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol.151, 1113–1118 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jansen, L. E., Black, B. E., Foltz, D. R. & Cleveland, D. W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol.176, 795–805 (2007). This elegant study, which uses SNAP-tag technology, shows that new CENP-A is deposited in a discrete time window at late telophase–G1 phase. ArticleCASPubMedPubMed Central Google Scholar
Sullivan, K. F. A solid foundation: functional specialization of centromeric chromatin. Curr. Opin. Genet. Dev.11, 182–188 (2001). ArticleCASPubMed Google Scholar
Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M. M. & Wu, C. Nonhistone Scm3 and histones CenH3–H4 assemble the core of centromere-specific nucleosomes. Cell129, 1153–1164 (2007). ArticleCASPubMed Google Scholar
Dalal, Y., Wang, H., Lindsay, S. & Henikoff, S. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol.5, e218 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Conde e Silva, N. et al. CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J. Mol. Biol.370, 555–573 (2007). ArticleCASPubMed Google Scholar
Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science294, 2539–2542 (2001). ArticleCASPubMed Google Scholar
Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nature Cell Biol.4, 89–93 (2002). ArticleCASPubMed Google Scholar
Yamada, T., Fischle, W., Sugiyama, T., Allis, C. D. & Grewal, S. I. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol. Cell20, 173–185 (2005). ArticleCASPubMed Google Scholar
Chen, E. S. et al. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature451, 734–737 (2008). ArticleCASPubMed Google Scholar
Kloc, A., Zaratiegui, M., Nora, E. & Martienssen, R. RNA interference guides histone modification during the S phase of chromosomal replication. Curr. Biol.18, 490–495 (2008). References 106 and 107 show that transcription and processing of centromeric repeats occurs in a discrete window during the cell cycle. ArticleCASPubMedPubMed Central Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). The first observation to link the RNAi pathway to heterochromatin maintenance in fission yeast. ArticleCASPubMed Google Scholar
Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S.I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl Acad. Sci. USA102, 152–157 (2005). ArticleCASPubMed Google Scholar
Shankaranarayana, G. D., Motamedi, M. R., Moazed, D. & Grewal, S. I. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr. Biol.13, 1240–1246 (2003). ArticleCASPubMed Google Scholar
Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biol.6, 784–791 (2004). ArticleCASPubMed Google Scholar
Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev.19, 489–501 (2005). ArticleCASPubMedPubMed Central Google Scholar
Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S. & Hannon, G. J. Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl Acad. Sci. USA102, 12135–12140 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rudert, F., Bronner, S., Garnier, J. M. & Dolle, P. Transcripts from opposite strands of gamma satellite DNA are differentially expressed during mouse development. Mamm. Genome6, 76–83 (1995). ArticleCASPubMed Google Scholar
Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol.13, 1192–1200 (2003). ArticleCASPubMed Google Scholar
Lu, J. & Gilbert, D. M. Cell cycle regulated transcription of heterochromatin in mammals vs. fission yeast: functional conservation or coincidence? Cell Cycle7, 1907–1910 (2008). ArticleCASPubMed Google Scholar
Muchardt, C. et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep.3, 975–981 (2002). ArticleCASPubMedPubMed Central Google Scholar
Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nature Genet.30, 329–334 (2002). ArticlePubMed Google Scholar
Fischle, W. et al. Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylation. Nature438, 1116–1122 (2005). ArticleCASPubMed Google Scholar
Hirota, T., Lipp, J. J., Toh, B. H. & Peters, J. M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature438, 1176–1180 (2005). ArticleCASPubMed Google Scholar
Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol.166, 493–505 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wu, R., Singh, P. B. & Gilbert, D. M. Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. J. Cell Biol.174, 185–194 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lu, J. & Gilbert, D. M. Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J. Cell Biol.179, 411–421 (2007). ArticleCASPubMedPubMed Central Google Scholar
Leonhardt, H., Page, A. W., Weier, H. U. & Bestor, T. H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell71, 865–873 (1992). ArticleCASPubMed Google Scholar
Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell4, 529–540 (1999). ArticleCASPubMed Google Scholar
Quivy, J. P., Gerard, A., Cook, A. J., Roche, D. & Almouzni, G. The HP1–p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nature Struct. Mol. Biol.15, 972–979 (2008). ArticleCAS Google Scholar
Taddei, A., Maison, C., Roche, D. & Almouzni, G. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biol.3, 114–120 (2001). ArticleCASPubMed Google Scholar
Funabiki, H., Hagan, I., Uzawa, S. & Yanagida, M. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J. Cell Biol.121, 961–976 (1993). ArticleCASPubMed Google Scholar
Heitz, E. Das heterochromatin der moose. Jahrbuch Wiss Botanik, 762–818 (1928) (in German).
Probst, A. V., Santos, F., Reik, W., Almouzni, G. & Dean, W. Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma116, 403–415 (2007). ArticlePubMed Google Scholar
Probst, A. V. & Almouzni, G. Pericentric heterochromatin: dynamic organization during early development in mammals. Differentiation76, 15–23 (2008). ArticleCASPubMed Google Scholar
Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature403, 501–502 (2000). The first illustration of selective DNA demethylation of the paternal genome. ArticleCASPubMed Google Scholar
Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol.241, 172–182 (2002). ArticleCASPubMed Google Scholar
Santos, F., Peters, A. H., Otte, A. P., Reik, W. & Dean, W. Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev. Biol.280, 225–236 (2005). ArticleCASPubMed Google Scholar
Martin, C. et al. Genome restructuring in mouse embryos during reprogramming and early development. Dev. Biol.292, 317–332 (2006). ArticleCASPubMed Google Scholar
Farthing, C. R. et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet.4, e1000116 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Hajkova, P. et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature452, 877–881 (2008). ArticleCASPubMed Google Scholar
Lee, J. et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development129, 1807–1817 (2002). ArticleCASPubMed Google Scholar
Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev.117, 15–23 (2002). ArticleCASPubMed Google Scholar
Bannister, A. J. & Kouzarides, T. Reversing histone methylation. Nature436, 1103–1106 (2005). ArticleCASPubMed Google Scholar
Howell, C. Y. et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell104, 829–838 (2001). ArticleCASPubMed Google Scholar
Morgan, H. D., Santos, F., Green, K., Dean, W. & Reik, W. Epigenetic reprogramming in mammals. Hum. Mol. Genet.14, R47–R58 (2005). ArticleCASPubMed Google Scholar
Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature447, 425–432 (2007). ArticleCASPubMed Google Scholar
Choi, Y. et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell110, 33–42 (2002). ArticleCASPubMed Google Scholar
Gong, Z. et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell111, 803–814 (2002). ArticleCASPubMed Google Scholar
Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature445, 671–675 (2007). ArticleCASPubMed Google Scholar
Ooi, S. K. & Bestor, T. H. The colorful history of active DNA demethylation. Cell133, 1145–1148 (2008). ArticleCASPubMed Google Scholar
van der Heijden, G. W. et al. Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev. Biol.298, 458–469 (2006). ArticleCASPubMed Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). Demonstrates that somatic cells can be reprogrammed to an embryonic cell fate by forced expression of embryonic transcription factors. ArticleCASPubMed Google Scholar
Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448, 318–324 (2007). ArticleCASPubMed Google Scholar
Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol.11, 1553–1558 (2001). ArticleCASPubMed Google Scholar
Roemer, I., Reik, W., Dean, W. & Klose, J. Epigenetic inheritance in the mouse. Curr. Biol.7, 277–280 (1997). ArticleCASPubMed Google Scholar
Morgan, H. D., Sutherland, H. G., Martin, D. I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nature Genet.23, 314–318 (1999). ArticleCASPubMed Google Scholar
Rakyan, V. K. et al. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc. Natl Acad. Sci. USA100, 2538–2543 (2003). ArticleCASPubMedPubMed Central Google Scholar
Buiting, K. et al. Epimutations in Prader–Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am. J. Hum. Genet.72, 571–577 (2003). ArticleCASPubMedPubMed Central Google Scholar
Blewitt, M. E., Vickaryous, N. K., Paldi, A., Koseki, H. & Whitelaw, E. Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet.2, e49 (2006). ArticleCASPubMedPubMed Central Google Scholar
Cropley, J. E., Suter, C. M., Beckman, K. B. & Martin, D. I. Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc. Natl Acad. Sci. USA103, 17308–17312 (2006). ArticleCASPubMedPubMed Central Google Scholar
Morgan, D. K. & Whitelaw, E. The case for transgenerational epigenetic inheritance in humans. Mamm. Genome19, 394–397 (2008). ArticlePubMed Google Scholar
Lolle, S. J., Victor, J. L., Young, J. M. & Pruitt, R. E. Genome-wide non-mendelian inheritance of extra-genomic information in Arabidopsis. Nature434, 505–509 (2005). ArticleCASPubMed Google Scholar
Rassoulzadegan, M. et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature441, 469–474 (2006). ArticleCASPubMed Google Scholar
Zacharioudakis, I., Gligoris, T. & Tzamarias, D. A yeast catabolic enzyme controls transcriptional memory. Curr. Biol.17, 2041–2046 (2007). ArticleCASPubMed Google Scholar
Lepere, G., Betermier, M., Meyer, E. & Duharcourt, S. Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. Genes Dev.22, 1501–1512 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lippman, Z. & Martienssen, R. The role of RNA interference in heterochromatic silencing. Nature431, 364–370 (2004). ArticleCASPubMed Google Scholar
McNairn, A. J. & Gilbert, D. M. Epigenomic replication: linking epigenetics to DNA replication. Bioessays25, 647–656 (2003). ArticleCASPubMed Google Scholar
Fox, M. H., Arndt-Jovin, D. J., Jovin, T. M., Baumann, P. H. & Robert-Nicoud, M. Spatial and temporal distribution of DNA replication sites localized by immunofluorescence and confocal microscopy in mouse fibroblasts. J. Cell Sci.99, 247–253 (1991). ArticlePubMed Google Scholar
O'Keefe, R. T., Henderson, S. C. & Spector, D. L. Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J. Cell Biol.116, 1095–1110 (1992). ArticleCASPubMed Google Scholar
Hiratani, I. et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol.6, e245 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol.14, 377–383 (2002). ArticleCASPubMed Google Scholar
Misteli, T. Beyond the sequence: cellular organization of genome function. Cell128, 787–800 (2007). ArticleCASPubMed Google Scholar
Tatematsu, K. I., Yamazaki, T. & Ishikawa, F. MBD2–MBD3 complex binds to hemi-methylated DNA and forms a complex containing DNMT1 at the replication foci in late S phase. Genes Cells5, 677–688 (2000). ArticleCASPubMed Google Scholar
Bozhenok, L., Wade, P. A. & Varga-Weisz, P. WSTF–ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J.21, 2231–2241 (2002). ArticleCASPubMedPubMed Central Google Scholar
Maison, C. & Almouzni, G. HP1 and the dynamics of heterochromatin maintenance. Nature Rev. Mol. Cell Biol.5, 296–304 (2004). ArticleCAS Google Scholar
van der Heijden, G. W. et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech. Dev.122, 1008–1022 (2005). ArticleCASPubMed Google Scholar
Torres-Padilla, M. E., Bannister, A. J., Hurd, P. J., Kouzarides, T. & Zernicka-Goetz, M. Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int. J. Dev. Biol.50, 455–461 (2006). ArticleCASPubMed Google Scholar