The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis (original) (raw)
Eilers, M. & Eisenman, R. N. Myc’s broad reach. Genes Dev.22, 2755–2766 (2008). ArticleCAS Google Scholar
Watt, F. M., Frye, M. & Benitah, S. A. MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat. Rev.8, 234–242 (2008). ArticleCAS Google Scholar
Sodir, N. M. & Evan, G. I. Nursing some sense out of Myc. J. Biol.8, 77.1–77.4 (2009). Article Google Scholar
Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature455, 679–683 (2008). ArticleCAS Google Scholar
Wilson, A., Laurenti, E. & Trumpp, A. Balancing dormant and self-renewing hematopoietic stem cells. Curr. Opin. Genet. Dev.19, 461–468 (2009). ArticleCAS Google Scholar
Habib, T. et al. Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. J. Cell Biol.179, 717–731 (2007). ArticleCAS Google Scholar
Conacci-Sorrell, M., Ngouenet, C. & Eisenman, R. N. Myc-nick: a cytoplasmic cleavage product of Myc that promotes α-tubulin acetylation and cell differentiation. Cell142, 480–493 (2010). ArticleCAS Google Scholar
Stoelzle, T., Schwarb, P., Trumpp, A. & Hynes, N. E. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland. BMC Biol.7, 63–82 (2009). Article Google Scholar
Muncan, V. et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol. Cell. Biol.26, 8418–8426 (2006). ArticleCAS Google Scholar
Lawlor, E. R. et al. Reversible kinetic analysis of Myc targets in vivo provides novel insights into Myc-mediated tumorigenesis. Cancer Res.66, 4591–4601 (2006). ArticleCAS Google Scholar
Frye, M., Gardner, C., Li, E. R., Arnold, I. & Watt, F. M. Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development130, 2793–2808 (2003). ArticleCAS Google Scholar
Frye, M. & Watt, F. M. The RNA methyltransferase Misu (NSun2) mediatesMyc-induced proliferation and is upregulated in tumors. Curr. Biol.16, 971–981 (2006). ArticleCAS Google Scholar
Arnold, I. & Watt, F. M. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol.11, 558–568 (2001). ArticleCAS Google Scholar
Cole, M. D. & Cowling, V. H. Transcription-independent functions of MYC:regulation of translation and DNA replication. Nat. Rev. Mol. Cell Biol.9, 810–815 (2008). ArticleCAS Google Scholar
Cowling, V. H. & Cole, M. D. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol. Cell. Biol.27, 2059–2073 (2007). ArticleCAS Google Scholar
Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell141, 432–445 (2010). ArticleCAS Google Scholar
Guccione, E. et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat. Cell Biol.8, 764–770 (2006). ArticleCAS Google Scholar
Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extendedtranscriptional network for pluripotency of embryonic stem cells. Cell132, 1049–1061 (2008). ArticleCAS Google Scholar
Fuchs, E. Finding one’s niche in the skin. Cell Stem Cell4, 499–502 (2009). ArticleCAS Google Scholar
Marenholz, I. et al. Genetic analysis of the epidermal differentiation complex (EDC) on human chromosome 1q21: chromosomal orientation, new markers, and a 6-Mb YAC contig. Genomics37, 295–302 (1996). ArticleCAS Google Scholar
Volz, A. et al. Physical mapping of a functional cluster of epidermal differentiation genes on chromosome 1q21. Genomics18, 92–99 (1993). ArticleCAS Google Scholar
Wang, X., Pasolli, H. A., Williams, T. & Fuchs, E. AP-2 factors act in concert with Notch to orchestrate terminal differentiation in skin epidermis. J. Cell Biol.183, 37–48 (2008). ArticleCAS Google Scholar
Lopez, R. G. et al. C/EBPα and β couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation. Nat. Cell Biol.11, 1181–1190 (2009). ArticleCAS Google Scholar
Nair, M. et al. Ovol1 regulates the growth arrest of embryonic epidermalprogenitor cells and represses c-myc transcription. J. Cell Biol.173, 253–264 (2006). ArticleCAS Google Scholar
Wells, J. et al. Ovol2 suppresses cell cycling and terminal differentiation of keratinocytes by directly repressing c-Myc and Notch1. J. Biol. Chem.284, 29125–29135 (2009). ArticleCAS Google Scholar
Segre, J. A., Bauer, C. & Fuchs, E. Klf4 is a transcription factorrequired for establishing the barrier function of the skin. Nat. Genet.22, 356–360 (1999). ArticleCAS Google Scholar
Hurlin, P. J. et al. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J.14, 5646–5659 (1995). ArticleCAS Google Scholar
Hurlin, P. J. et al. Regulation of Myc and Mad during epidermal differentiation and HPV-associated tumorigenesis. Oncogene11, 2487–2501 (1995). CASPubMed Google Scholar
Klose, R. J. et al. The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell128, 889–900 (2007). ArticleCAS Google Scholar
Blackwood, E. M. & Eisenman, R. N. Max: a helix–loop–helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science251, 1211–1217 (1991). ArticleCAS Google Scholar
Prendergast, G. C., Lawe, D. & Ziff, E. B. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell65, 395–407 (1991). ArticleCAS Google Scholar
McMahon, S. B., Wood, M. A. & Cole, M. D. The essential cofactor TRRAPrecruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol.20, 556–562 (2000). ArticleCAS Google Scholar
Ayer, D. E., Kretzner, L. & Eisenman, R. N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell72, 211–222 (1993). ArticleCAS Google Scholar
Zervos, A. S., Gyuris, J. & Brent, R. Mxi1, a protein that specifically interacts with Max to bind Myc–Max recognition sites. Cell72, 223–232 (1993). ArticleCAS Google Scholar
Rao, G. et al. Mouse Sin3A interacts with and can functionally substitute for the amino-terminal repression of the Myc antagonist Mxi1. Oncogene12, 1165–1172 (1996). CASPubMed Google Scholar
Laherty, C. D. et al. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell89, 349–356 (1997). ArticleCAS Google Scholar
Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L. & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell89, 341–347 (1997). ArticleCAS Google Scholar
Patel, J. H. et al. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol. Cell. Biol.24, 10826–10834 (2004). ArticleCAS Google Scholar
Dannenberg, J. H. et al. mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev.19, 1581–1595 (2005). ArticleCAS Google Scholar
Cowley, S. M. et al. The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Mol. Cell. Biol.25, 6990–7004 (2005). ArticleCAS Google Scholar
Keller, A. et al. GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments. BMC Bioinformatics9, 552–558 (2008). Article Google Scholar
Zambelli, F., Pesole, G. & Pavesi, G. Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic acid Res.37, W247–W252 (2009). ArticleCAS Google Scholar
McConnell, B. B. & Yang, V. W. Mammalian Kruppel-like factors in health and diseases. Physiol. Rev.90, 1337–1381 (2010). ArticleCAS Google Scholar
Payne, C. J. et al. Sin3a is required by sertoli cells to establish a niche for undifferentiated spermatogonia, germ cell tumors, and spermatid elongation. Stem Cells28, 1424–1434 (2010). ArticleCAS Google Scholar
van Oevelen, C. et al. The mammalian Sin3 proteins are required for muscle development and sarcomere specification. Mol. Cell. Biol.30, 5686–5697 (2010). ArticleCAS Google Scholar
van Oevelen, C. et al. A role for mammalian Sin3 in permanent gene silencing. Mol. Cell32, 359–370 (2008). ArticleCAS Google Scholar
Vervoorts, J. et al. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep.4, 484–490 (2003). ArticleCAS Google Scholar
Popov, N., Schulein, C., Jaenicke, L. A. & Eilers, M. Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nat. Cell Biol.12, 973–981 (2010). ArticleCAS Google Scholar
Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol.10, 207–217 (2009). ArticleCAS Google Scholar
Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet.21, 70–71 (1999). ArticleCAS Google Scholar
David, G. et al. Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation. Proc. Natl Acad. Sci. USA105, 4168–4172 (2008). ArticleCAS Google Scholar
de Alboran, I. M. et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity14, 45–55 (2001). ArticleCAS Google Scholar
Braun, K. M. et al. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development130, 5241–5255 (2003). ArticleCAS Google Scholar
Hussain, S. et al. The nucleolar RNA methyltransferase Misu (NSun2) is required for mitotic spindle stability. J. Cell Biol.186, 27–40 (2009). ArticleCAS Google Scholar
Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science290, 2306–2309 (2000). ArticleCAS Google Scholar
Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol.5, 80.1–80.16 (2004). Article Google Scholar
Smyth, G. in Bioinformatics and Computational Biology Solutions using R and Bioconductor (eds Carey, V., Gentleman, R., Dudoit, S., Huber, W. & Irizarry, R.) 397–420 (Springer, 2005). Book Google Scholar
Tai, Y. C. & Speed, T. P. On gene ranking using replicated microarray time course data. Biometrics65, 40–51 (2009). ArticleCAS Google Scholar
Toedling, J. et al. Ringo—an R/Bioconductor package for analyzing ChIP-chip readouts. BMC Bioinformatics8, 221–225 (2007). Article Google Scholar
Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand-binding domain as an improvedswitch for the regulation of heterologous proteins. Nucleic Acid Res.23, 1686–1690 (1995). ArticleCAS Google Scholar