- Burgering, B. M. & Coffer, P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).
Article CAS PubMed Google Scholar
- Stephens, L. et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279, 710–714 (1998).
Article CAS PubMed Google Scholar
- Calnan, D. R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).
Article CAS PubMed Google Scholar
- Dorman, J. B., Albinder, B., Shroyer, T. & Kenyon, C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141, 1399–1406 (1995).
CAS PubMed PubMed Central Google Scholar
- Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).
Article CAS PubMed Google Scholar
- Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12, 2488–2498 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Dansen, T. B. & Burgering, B. M. Unravelling the tumor-suppressive functions of FOXO proteins. Trends Cell Biol. 18, 421–429 (2008).
Article CAS PubMed Google Scholar
- Kops, G. J. et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell Biol. 22, 2025–2036 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Tran, H. et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296, 530–534 (2002).
Article CAS PubMed Google Scholar
- Delpuech, O. et al. Induction of Mxi1-SR alpha by FOXO3a contributes to repression of Myc-dependent gene expression. Mol. Cell Biol. 27, 4917–4930 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Mei, Y. et al. FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc. Natl Acad. Sci. USA 106, 5153–5158 (2009).
Article CAS PubMed PubMed Central Google Scholar
- van der Vos, K. E. & Coffer, P. J. The extending network of FOXO transcriptional target genes. Antioxid. Redox. Signal. 14, 579–592 (2010).
Article PubMed Google Scholar
- Eisenberg, D., Gill, H. S., Pfluegl, G. M. & Rotstein, S. H. Structure-function relationships of glutamine synthetases. Biochim. Biophys. Acta 1477, 122–145 (2000).
Article CAS PubMed Google Scholar
- Berlicki, L. Inhibitors of glutamine synthetase and their potential application in medicine. Mini. Rev. Med. Chem. 8, 869–878 (2008).
Article CAS PubMed Google Scholar
- DeBerardinis, R.J. & Cheng, T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010).
Article CAS PubMed Google Scholar
- Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).
Article CAS PubMed Google Scholar
- Sancak, Y. et al. Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Blommaart, E. F., Luiken, J. J., Blommaart, P. J., van Woerkom, G. M. & Meijer, A. J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. 270, 2320–2326 (1995).
Article CAS PubMed Google Scholar
- Mortimore, G. E. & Schworer, C. M. Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 270, 174–176 (1977).
Article CAS PubMed Google Scholar
- Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Rubinsztein, D. C. et al. In search of an ‘autophagomometer’. Autophagy 5, 585–589 (2009).
Article CAS PubMed Google Scholar
- Proikas-Cezanne, T., Ruckerbauer, S., Stierhof, Y. D., Berg, C. & Nordheim, A. Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy. FEBS Lett. 581, 3396–3404 (2007).
Article CAS PubMed Google Scholar
- Codogno, P., Mehrpour, M. & Proikas-Cezanne, T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13, 7–12 (2011).
Article PubMed Google Scholar
- Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).
Article CAS PubMed Google Scholar
- Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005).
Article CAS PubMed Google Scholar
- Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458–471 (2007).
Article CAS PubMed Google Scholar
- Zhao, J. et al. FoxO3 coordinately activates protein degradation by the a utophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472–483 (2007).
Article CAS PubMed Google Scholar
- Xu, P., Das, M., Reilly, J. & Davis, R. J. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev. 25, 310–322 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Zhao, Y. et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 12, 665–675 (2010).
Article CAS PubMed Google Scholar
- Cheong, H., Lindsten, T., Wu, J., Lu, C. & Thompson, C. B. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc. Natl Acad. Sci. USA 108, 11121–11126 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Eng, C. H., Yu, K., Lucas, J., White, E. & Abraham, R. T. Ammonia derivedfrom glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 3, ra31 (2010).
PubMed Google Scholar
- Pattingre, S., Espert, L., Biard-Piechaczyk, M. & Codogno, P. Regulation ofmacroautophagy by mTOR and Beclin 1 complexes. Biochimie 90, 313–323 (2008).
Article CAS PubMed Google Scholar
- Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Seglen, P. O. & Gordon, P. B. Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes. J. Cell Biol. 99, 435–444 (1984).
Article CAS PubMed Google Scholar
- Schworer, C. M. & Mortimore, G. E. Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc. Natl Acad. Sci. USA 76, 3169–3173 (1979).
Article CAS PubMed PubMed Central Google Scholar
- Krause, U., Bertrand, L., Maisin, L., Rosa, M. & Hue, L. Signalling pathways and combinatory effects of insulin and amino acids in isolated rat hepatocytes. Eur. J. Biochem. 269, 3742–3750 (2002).
Article CAS PubMed Google Scholar
- Gebhardt, R. & Mecke, D. Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J. 2, 567–570 (1983).
Article CAS PubMed PubMed Central Google Scholar
- Sakiyama, T., Musch, M. W., Ropeleski, M. J., Tsubouchi, H. & Chang, E. B. Glutamine increases autophagy under Basal and stressed conditions in intestinal epithelial cells. Gastroenterology 136, 924–932 (2009).
Article CAS PubMed Google Scholar
- Zhao, M. & Klionsky, D. J. AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab. 13, 119–120 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Tardito, S. et al. The non-proteinogenic amino acids L: -methionine sulfoximine and DL: -phosphinothricin activate mTOR. Amino Acids 42, 2507–2512 (2011).
Article PubMed Google Scholar
- Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).
Article CAS PubMed PubMed Central Google Scholar
- White, E. & DiPaola, R. S. The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res. 15, 5308–5316 (2009).
Article PubMed PubMed Central Google Scholar
- Dijkers, P. F., Medema, R. H., Lammers, J. W., Koenderman, L. & Coffer, P. J. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol. 10, 1201–1204 (2000).
Article CAS PubMed Google Scholar
- Dijkers, P. F. et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell Biol. 20, 9138–9148 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Fahrner, J. et al. Identification and functional characterization of regulatory elements of the glutamine synthetase gene from rat liver. Eur. J. Biochem. 213, 1067–1073 (1993).
Article CAS PubMed Google Scholar
- Gaunitz, F., Weber, S., Scheja, L. & Gebhardt, R. Identification of a cis-acting element and a novel trans-acting factor of the glutamine synthetase gene in liver cells. Biochem. Biophys. Res. Commun. 284, 377–383 (2001).
Article CAS PubMed Google Scholar
- Pfisterer, S. G., Mauthe, M., Codogno, P. & Proikas-Cezanne, T. Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol. Pharmacol. 80, 1066–1075 (2011).
Article CAS PubMed Google Scholar
- Caldenhoven, E. et al. Activation of the STAT3/acute phase response factor transcription factor by interleukin-5. J. Biol. Chem. 270, 25778–25784 (1995).
Article CAS PubMed Google Scholar
- Raaben, M. et al. Improved microarray gene expression profiling of virus-infected cells after removal of viral RNA. BMC Genom. 9, 221 (2008).
Article Google Scholar
- Deuel, T. F., Louie, M. & Lerner, A. Glutamine synthetase from rat liver. Purification, properties, and preparation of specific antisera. J. Biol. Chem. 253, 6111–6118 (1978).
CAS PubMed Google Scholar
- Guthke, R. et al. Dynamics of amino acid metabolism of primary human liver cells in 3D bioreactors. Bioprocess. Biosyst. Eng. 28, 331–340 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
CAS PubMed PubMed Central Google Scholar
- Lewis, J. A. & Fleming, J. T. Basic culture methods. Methods Cell Biol. 48, 3–29 (1995).
Article CAS PubMed Google Scholar
- Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).
Article CAS PubMed Google Scholar