A unique Oct4 interface is crucial for reprogramming to pluripotency (original) (raw)
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCAS Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). ArticleCAS Google Scholar
Shi, Y. et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell3, 568–574 (2008). ArticleCAS Google Scholar
Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol.26, 101–106 (2008). ArticleCAS Google Scholar
Feng, B. et al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat. Cell Biol.11, 197–203 (2009). ArticleCAS Google Scholar
Klemm, J. D., Rould, M. A., Aurora, R., Herr, W. & Pabo, C. O. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell77, 21–32 (1994). ArticleCAS Google Scholar
Reményi, A. et al. Differential dimer activities of the transcription factor Oct-1 by DNA-induced interface swapping. Mol. Cell8, 569–580 (2001). Article Google Scholar
Reményi, A. et al. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev.17, 2048–2059 (2003). Article Google Scholar
Williams, D. C. Jr, Cai, M. & Clore, G. M. Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1.Sox2.Hoxb1–DNA ternary transcription factor complex. J. Biol. Chem.279, 1449–1457 (2004). ArticleCAS Google Scholar
Jauch, R., Choo, S. H., Ng, C. K. & Kolatkar, P. R. Crystal structure of the dimeric Oct6 (POU3f1) POU domain bound to palindromic MORE DNA. Proteins79, 674–677 (2011). ArticleCAS Google Scholar
Nishimoto, M. et al. Oct-3/4 maintains the proliferative embryonic stem cell state via specific binding to a variant octamer sequence in the regulatory region of the UTF1 locus. Mol. Cell Biol.25, 5084–5094 (2005). ArticleCAS Google Scholar
Pesce, M., Gross, M. K. & Schöler, H. R. In line with our ancestors: Oct-4 and the mammalian germ. Bioessays20, 722–732 (1998). ArticleCAS Google Scholar
Kehler, J. et al. Oct4 is required for primordial germ cell survival. EMBO Rep.5, 1078–1083 (2004). ArticleCAS Google Scholar
Klemm, J. D. & Pabo, C. O. Oct-1 POU domain-DNA interactions: cooperative binding of isolated subdomains and effects of covalent linkage. Genes Dev.10, 27–36 (1996). ArticleCAS Google Scholar
Van den Berg, D. L. et al. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem. Cell6, 369–381 (2010). ArticleCAS Google Scholar
Pardo, M. et al. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell6, 382–395 (2010). ArticleCAS Google Scholar
Ding, J., Xu, H., Faiola, F., Ma’ayan, A. & Wang, J. Oct4 links multiple epigenetic pathways to the pluripotency network. Cell Res.22, 155–167 (2012). ArticleCAS Google Scholar
Singhal, N. et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell141, 943–955 (2010). ArticleCAS Google Scholar
Trotter, K. W. & Archer, T. K. The BRG1 transcriptional coregulator. Nucl. Recept. Signal.6, e004 (2008). Article Google Scholar
Hu, G. & Wade, P. A. NuRD and pluripotency: a complex balancing act. Cell Stem Cell10, 497–503 (2012). ArticleCAS Google Scholar
Rai, K. et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell135, 1201–1212 (2008). ArticleCAS Google Scholar
Bhutani, N. et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature463, 1042–1047 (2010). ArticleCAS Google Scholar
Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet.24, 372–376 (2000). ArticleCAS Google Scholar
Adachi, K. & Schöler, H. R. Directing reprogramming to pluripotency by transcription factors. Curr. Opin. Genet. Dev.22, 416–422 (2012). ArticleCAS Google Scholar
Schöler, H. R., Balling, R., Hatzopoulos, A. K., Suzuki, N. & Gruss, P. Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J.8, 2551–2557 (1989). Article Google Scholar
Mueller-Dieckmann, J. The open-access high-throughput crystallization facility at EMBL Hamburg. Acta Crystallogr. D62, 1446–1452 (2006). ArticleCAS Google Scholar
Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr.21, 916–924 (1988). ArticleCAS Google Scholar
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221 (2010). ArticleCAS Google Scholar
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007). ArticleCAS Google Scholar
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecularstructures by the maximum-likelihood method. Acta Crystallogr. D53, 240–255 (1997). ArticleCAS Google Scholar
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D66, 486–501 (2010). ArticleCAS Google Scholar
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D66, 12–21 (2010). ArticleCAS Google Scholar
Sauter, P. & Matthias, P. Coactivator OBF-1 makes selective contacts with both the POU-specific domain and the POU homeodomain and acts as a molecular clamp on DNA. Mol. Cell Biol.18, 7397–7409 (1998). ArticleCAS Google Scholar
Tomilin, A. et al. Synergism with the coactivator OBF-1 (OCA-B, BOB-1) is mediated by a specific POU dimer configuration. Cell103, 853–864 (2000). ArticleCAS Google Scholar
Kim, J. B. et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature454, 646–650 (2008). ArticleCAS Google Scholar
Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods6, 359–362 (2009). ArticleCAS Google Scholar
Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem.75, 663–670 (2003). ArticleCAS Google Scholar
Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol.234, 779–815 (1993). ArticleCAS Google Scholar
Fiser, A., Do, R. K. & Sali, A. Modeling of loops in protein structures. Protein Sci.9, 1753–1773 (2000). ArticleCAS Google Scholar