The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells (original) (raw)
Dzierzak, E. The emergence of definitive hematopoietic stem cells in the mammal. Curr. Opin. Hematol.12, 197–202 (2005). ArticlePubMed Google Scholar
Ema, H. & Nakauchi, H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood95, 2284–2288 (2000). CASPubMed Google Scholar
Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development129, 4891–4899 (2002). CASPubMed Google Scholar
Bowie, M. B. et al. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Invest.116, 2808–2816 (2006). ArticleCASPubMedPubMed Central Google Scholar
Morrison, S. J., Hemmati, H. D., Wandycz, A. M. & Weissman, I. L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA92, 10302–10306 (1995). ArticleCASPubMedPubMed Central Google Scholar
Rhodes, K. E. et al. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell2, 252–263 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. K. The placenta is a niche for hematopoietic stem cells. Dev. Cell8, 365–375 (2005). ArticleCASPubMed Google Scholar
Ottersbach, K. & Dzierzak, E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev. Cell8, 377–387 (2005). ArticleCASPubMed Google Scholar
Pawliuk, R., Eaves, C. & Humphries, R. K. Evidence of both ontogeny and transplant dose-regulated expansion of hematopoietic stem cells in vivo. Blood88, 2852–2858 (1996). CASPubMed Google Scholar
Micklem, H. S., Ford, C. E., Evans, E. P., Ogden, D. A. & Papworth, D. S. Competitive in vivo proliferation of foetal and adult haematopoietic cells in lethally irradiated mice. J. Cell. Physiol.79, 293–298 (1972). ArticleCASPubMed Google Scholar
Harrison, D. E., Zhong, R. K., Jordan, C. T., Lemischka, I. R. & Astle, C. M. Relative to adult marrow, fetal liver repopulates nearly five times more effectively long-term than short-term. Exp. Hematol.25, 293–297 (1997). CASPubMed Google Scholar
Rebel, V. I., Miller, C. L., Eaves, C. J. & Lansdorp, P. M. The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their liver adult bone marrow counterparts. Blood87, 3500–3507 (1996). CASPubMed Google Scholar
Bowie, M. B. et al. Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc. Natl Acad. Sci. USA104, 5878–5882 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kim, I., Saunders, T. L. & Morrison, S. J. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell130, 470–483 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mochizuki-Kashio, M. et al. Dependency on the polycomb gene Ezh2distinguishes fetal from adult hematopoietic stem cells. Blood118, 6553–6561 (2011). ArticleCASPubMed Google Scholar
Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature423, 302–305 (2003). ArticleCASPubMed Google Scholar
Hock, H. et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature431, 1002–1007 (2004). ArticleCASPubMed Google Scholar
Hock, H. et al. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev.18, 2336–2341 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ye, M. et al. C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nat. Cell Biol.15, 385–394 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kent, D. G. et al. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood113, 6342–6350 (2009). ArticleCASPubMed Google Scholar
Benz, C. et al. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell10, 273–283 (2012). ArticleCASPubMed Google Scholar
Moss, E. G., Lee, R. C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell88, 637–646 (1997). ArticleCASPubMed Google Scholar
Piskounova, E. et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem.283, 21310–21314 (2008). ArticleCASPubMed Google Scholar
Yuan, J., Nguyen, C. K., Liu, X., Kanellopoulou, C. & Muljo, S. A. Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science335, 1195–1200 (2012). ArticleCASPubMedPubMed Central Google Scholar
Cleynen, I. et al. HMGA2 regulates transcription of the Imp2 gene via an intronic regulatory element in cooperation with nuclear factor- κB. Mol. Cancer Res.5, 363–372 (2007). ArticleCASPubMed Google Scholar
Brants, J. R. et al. Differential regulation of the insulin-like growth factor II mRNA-binding protein genes by architectural transcription factor HMGA2. FEBS Lett.569, 277–283 (2004). ArticleCASPubMed Google Scholar
Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C. & Eaves, C. J. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl Acad. Sci. USA87, 8736–8740 (1990). ArticleCASPubMedPubMed Central Google Scholar
Ikeda, K., Mason, P. J. & Bessler, M. 3’UTR-truncated Hmga2 cDNA causes MPN-like hematopoiesis by conferring a clonal growth advantage at the level of HSC in mice. Blood117, 5860–5869 (2011). ArticleCASPubMedPubMed Central Google Scholar
Xiang, X., Benson, K. F. & Chada, K. Mini-mouse: disruption of the pygmy locus in a transgenic insertional mutant. Science247, 967–969 (1990). ArticleCASPubMed Google Scholar
Zhou, X., Benson, K. F., Ashar, H. R. & Chada, K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature376, 771–774 (1995). ArticleCASPubMed Google Scholar
Zou, Y. et al. Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science340, 372–376 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kikuchi, K. & Kondo, M. Developmental switch of mouse hematopoietic stem cells from fetal to adult type occurs in bone marrow after birth. Proc. Natl Acad. Sci. USA103, 17852–17857 (2006). ArticleCASPubMedPubMed Central Google Scholar
Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature403, 901–906 (2000). ArticleCASPubMed Google Scholar
Toledano, H., D’Alterio, C., Czech, B., Levine, E. & Jones, D. L. The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature485, 605–610 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nishino, J., Kim, I., Chada, K. & Morrison, S. J. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell135, 227–239 (2008). ArticleCASPubMedPubMed Central Google Scholar
Murakami, Y. et al. Deregulated expression of HMGA2 is implicated in clonal expansion of PIGA deficient cells in paroxysmal nocturnal haemoglobinuria. Brit. J. Haematol.156, 383–387 (2012). ArticleCAS Google Scholar
Cavazzana-Calvo, M. et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature467, 318–322 (2010). ArticleCASPubMedPubMed Central Google Scholar
Inoue, N. et al. Molecular basis of clonal expansion of hematopoiesis in 2 patients with paroxysmal nocturnal hemoglobinuria (PNH). Blood108, 4232–4236 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wang, G. P. et al. Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood115, 4356–4366 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ikuta, K. & Weissman, I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl Acad. Sci. USA89, 1502–1506 (1992). ArticleCASPubMedPubMed Central Google Scholar
Benson, K. F. & Chada, K. Mini-mouse: phenotypic characterization of a transgenic insertional mutant allelic to pygmy. Genet. Res.64, 27–33 (1994). ArticleCASPubMed Google Scholar
Lynch, S. A. et al. The 12q14 microdeletion syndrome: six new cases confirming the role of HMGA2 in growth. Eur. J. Hum. Genet.19, 534–539 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mari, F. et al. Refinement of the 12q14 microdeletion syndrome: primordial dwarfism and developmental delay with or without osteopoikilosis. Eur. J. Hum. Genet.17, 1141–1147 (2009). ArticleCASPubMedPubMed Central Google Scholar
Weedon, M. N. et al. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat. Genet.39, 1245–1250 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lin, S. C. et al. Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature364, 208–213 (1993). ArticleCASPubMed Google Scholar
Li, S. et al. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature347, 528–533 (1990). ArticleCASPubMed Google Scholar
Sinha, Y. N., Wolff, G. L., Baxter, S. R. & Domon, O. E. Serum and pituitary concentrations of growth hormone and prolactin in pygmy mice. Proc. Soc. Exp. Biol. Med.162, 221–223 (1979). ArticleCASPubMed Google Scholar
Nissley, S. P., Knazek, R. A. & Wolff, G. L. Somatomedin activity in sera of genetically small mice. Horm. Metabol. Res.12, 158–164 (1980). ArticleCAS Google Scholar
Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell1, 218–229 (2007). ArticleCASPubMed Google Scholar
Boggs, D. R. The total marrow mass of the mouse—a simplified method of measurement. Am. J. Hematol.16, 277–286 (1984). ArticleCASPubMed Google Scholar
Hu, Y. F. & Smyth, G. K. ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods347, 70–78 (2009). ArticleCASPubMed Google Scholar
Miller, C. L. & Eaves, C. J. Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. Proc. Natl Acad. Sci. USA94, 13648–13653 (1997). ArticleCASPubMedPubMed Central Google Scholar
Challita, P. M. et al. Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells. J. Virol.69, 748–755 (1995). CASPubMedPubMed Central Google Scholar
Carbonaro, D. A. et al. In vivo transduction by intravenous injection of a lentiviral vector expressing human ADA into neonatal ADA gene knockout mice: a novel form of enzyme replacement therapy for ADA deficiency. Mol. Ther.13, 1110–1120 (2006). ArticleCASPubMed Google Scholar
Imren, S. et al. High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J. Clin. Invest.114, 953–962 (2004). ArticleCASPubMedPubMed Central Google Scholar