Johnson, K. R., Lehn, D. A. & Reeves, R. Alternative processing of mRNAs encoding mammalian chromosomal high-mobility-group proteins HMG-I and HMG-Y. Mol. Cell Biol.9, 2114–2123 (1989). ArticleCASPubMedPubMed Central Google Scholar
Nagpal, S. et al. Retinoid-dependent recruitment of a histone H1 displacement activity by retinoic acid receptor. J. Biol. Chem.6, 22563–22568 (1999). Article Google Scholar
Reeves, R. & Nissen, M. S. The AT DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J. Biol. Chem.265, 8573–8582 (1990). CASPubMed Google Scholar
Thanos, D. & Maniatis, T. The high mobility group protein HMG I(Y) is required for NF-κB-dependent virus induction of the human IFN-β gene. Cell27, 777–789 (1992). The first paper describing the involvement of HMGA proteins as architectural factors in the assembly of a high-order multiprotein transcription complex. Article Google Scholar
Thanos, D., Du, W. & Maniatis, T. The high mobility group protein HMG I(Y) is an essential structural component of a virus-inducible enhancer complex. Cold Spring Harb. Symp. Quant. Biol.58, 73–81 (1993). ArticleCASPubMed Google Scholar
Zhou, X., Benson, K. F., Ashar, H. R. & Chada K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature376, 771–774 (1995). This paper demonstrates that the spontaneous mouse pygmy phenotype, characterized by dwarfism that cannot be explained by aberrations in the growth hormone-insulin-like growth factor endocrine pathway, arises from the inactivation of theHmga2gene. ArticleCASPubMed Google Scholar
Chiappetta, G., et al. High level expression of the HMGI (Y) gene during embryonic development. Oncogene13, 2439–2446 (1996). CASPubMed Google Scholar
Rogalla, P. et al. HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am. J. Pathol.149, 775–779 (1996). CASPubMedPubMed Central Google Scholar
Rommel, B. et al. HMGI-C, a member of the high mobility group family of proteins, is expressed in hematopoietic stem cells and in leukemic cells. Leuk. Lymphoma.26, 603–607 (1997). ArticleCASPubMed Google Scholar
Anand, A. & Chada K. In vivo modulation of Hmgic reduces obesity. Nature Genet.24, 377–380 (2000). ArticleCASPubMed Google Scholar
Chieffi, P. et al. HMGA1 and HMGA2 protein expression in mouse spermatogenesis. Oncogene21, 3644–3650 (2002). ArticleCASPubMed Google Scholar
Di Agostino, S. et al. Phosphorylation of high-mobility group protein A2 by Nek2 kinase during the first meiotic division in mouse spermatocytes. Mol. Biol. Cell15, 1224–1232 (2004). ArticleCASPubMedPubMed Central Google Scholar
Giancotti, V. et al. Changes in nuclear proteins following transformation of rat thyroid epithelial cells by a murine sarcoma retrovirus. Cancer Res.45, 6051–6057 (1985). First isolation of the HMGA2 protein and association of HMGA protein expression with the neoplastic phenotype. CASPubMed Google Scholar
Giancotti, V. et al. Analysis of the HMGI nuclear proteins in mouse neoplastic cells induced by different procedures. Exp. Cell Res.184, 538–545 (1989). ArticleCASPubMed Google Scholar
Chiappetta, G. et al. The expression of the high mobility group HMGI (Y) proteins correlates with the malignant phenotype of human thyroid neoplasias. Oncogene10, 1307–1314 (1995). CASPubMed Google Scholar
Lund, T., Holtlund, J., Fredriksen, M. & Laland, S. G. On the presence of two new high mobility group-like proteins in HeLa S3 cells. FEBS Lett.21, 163–167 (1983). Article Google Scholar
Giancotti, V. et al. Elevated levels of a specific class of nuclear phosphoproteins in cells transformed with v-ras and v-mos oncogenes and by cotransfection with c- myc and polyoma middle T genes. EMBO J.6, 1981–1987 (1987). ArticleCASPubMedPubMed Central Google Scholar
Berlingieri, M. T. et al. Inhibition of HMGI-C protein synthesis suppresses retrovirally induced neoplastic transformation of rat thyroid cells. Mol. Cell Biol.15, 1545–1553 (1995). By using an antisense technology to block HMGA2 protein synthesis, this paper demonstrates the causal role of HMGA proteins in thyroid cell transformation induced by retroviral transforming oncogenes. ArticleCASPubMedPubMed Central Google Scholar
Berlingieri, M. T., Pierantoni, G. M., Giancotti, V., Santoro, M. & Fusco, A. Thyroid cell transformation requires the expression of the HMGA1 proteins. Oncogene21, 2971–2980 (2002). ArticleCASPubMed Google Scholar
Scala, S., Portella, G., Fedele, M., Chiappetta, G. & Fusco, A. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias. Proc. Natl Acad. Sci. USA.97, 4256–4261 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fedele, M. et al. Overexpression of proteins HMGA1 induces cell cycle deregulation and apoptosis in normal rat thyroid cells. Cancer Res.61, 4583–4590 (2001). CASPubMed Google Scholar
Wood, L. J., Maher, J. F., Bunton, T. E. & Resar, L. M. The oncogenic properties of the HMG-I gene family. Cancer Res.60, 4256–4261 (2000). This paper demonstrates that overexpression of the HMGA1 and HMGA2 proteins can transform cells in culture. CASPubMed Google Scholar
Reeves, R., Edberg, D. D. & Li, Y. Architectural transcription factor HMGI(Y) promotes tumor progression and mesenchymal transition of human epithelial cells. Mol. Cell Biol.21, 575–594 (2001). Human breast epithelial cells harboring tetracycline-regulated HMGI(Y) transgenes acquire the ability to form both primary and metastatic tumours in nude mice only when the transgenes are actively expressed. Many of these tumors have undergone an epithelial-mesenchymal transitionin vivo. The HMGA1b, rather than the HMGA1a, isoform of these proteins is the most effective elicitor of both neoplastic transformation and metastatic progression. ArticleCASPubMedPubMed Central Google Scholar
Sreekantaiah, C. et al. Cytogenetic profile of 109 lipomas. Cancer Res.51, 422–433 (1991). CASPubMed Google Scholar
Schoenmakers, E. F., et al. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nature Genet.10, 436–444 (1995). ArticleCASPubMed Google Scholar
Ashar, H. R. et al. Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell82, 57–65 (1995). References 25 and 26 report, for the first time, rearrangements of theHMGA2gene in benign mesenchymal tumours. ArticleCASPubMed Google Scholar
Heim, S. et al. A specific translocation, t (12;14) (q14–15;q23–24), characterizes a subgroup of uterine leiomyomas. Cancer Genet. Cytogenet.32, 13–17 (1988). ArticleCASPubMed Google Scholar
Hennig, Y. et al. HMGIC expressed in a uterine leiomyoma with a deletion of the long arm of chromosome 7 along with a 12q14–15 rearrangement but not in tumors showing del(7) as the sole cytogenetic abnormality. Cancer Genet. Cytogenet.96, 129–133 (1997). ArticleCASPubMed Google Scholar
Kazmierczak, B. et al. HMGI-C rearrangements as the molecular basis for the majority of pulmonary chondroid hamartomas: a survey of 30 tumors. Oncogene12, 515–521 (1996). CASPubMed Google Scholar
Staats, B. et al. A fibroadenoma with a t(4;12) (q27;q15) affecting the HMGI-C gene, a member of the high mobility group protein gene family. Breast Cancer Res. Treat.38, 299–303 (1996). ArticleCASPubMed Google Scholar
Walter, T. A., Fan, S. X., Medchill, M. T., Berger, C. S. Decker, H. J. & Sandberg, A. A. Inv (12) (p11. q13) in an endometrial polyp. Cancer Genet. Cytogenet.41, 99–103 (1989). ArticleCASPubMed Google Scholar
Wanschura, S., et al. Hidden paracentric inversions of chromosome arm 12q affecting the HMGIC gene. Genes Chromosomes Cancer18, 322–323 (1997). ArticleCASPubMed Google Scholar
Dal Cin, P. et al. Amplification and expression of the HMGIC gene in a benign endometrial polyp. Genes Chromosomes Cancer22, 95–99 (1998). ArticleCASPubMed Google Scholar
Wanschura, S. et al. Regional fine mapping of the multiple-aberration region involved in uterine leiomyoma, lipoma and pleomorphic adenoma of the salivary gland to 12q15. Genes Chromosomes Cancer14, 68–70 (1995). ArticleCASPubMed Google Scholar
Geurts, J. M., Schoenmakers, E. F., Roijer, E., Astrom, A. K., Stenman, G. & Van de Ven, W. J. Identification of NFIB as recurrent translocation partner gene of HMGIC in pleomorphic adenomas. Oncogene16, 865–872 (1998). ArticleCASPubMed Google Scholar
Geurts, J. M., Schoenmakers, E. F., Roijer, E., Stenman, G. & Van de Ven, W. J. Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res.57, 13–17 (1997). CASPubMed Google Scholar
Geurts, J. M., Schoenmakers, E. F. & Van de Ven, W. J. Molecular characterization of a complex chromosomal rearrangement in a pleomorphic salivary gland adenoma involving the 3′-UTR of HMGIC. Cancer Genet. Cytogenet.95, 198–205 (1997). ArticleCASPubMed Google Scholar
Rabban, J. T., Dal Cin, P. & Oliva, E. HMGA2 rearrangement in a case of vulvar aggressive angiomyxoma. Int. J. Gynecol. Pathol.25, 403–407 (2006). ArticlePubMed Google Scholar
Kazmierczak, B. et al. Molecular characterization of 12q14–15 rearrangements in three pulmonary chondroid hamartomas. Cancer Res.55, 2497–2499 (1995). CASPubMed Google Scholar
Kools, P. F. & Van de Ven, W. J. Amplification of a rearranged form of the high-mobility group protein gene HMGI-C in OsA-CI osteosarcoma cells. Cancer Genet. Cytogenet.91, 1–7 (1996). ArticleCASPubMed Google Scholar
Mine, N. et al. Fusion of a sequence from HEI10 (14q11) to the HMGIC gene at 12q15 in a uterine leiomyoma. Jpn J. Cancer Res.92, 135–139 (2001). ArticleCASPubMedPubMed Central Google Scholar
Schoenmakers, E. F., Huysmans, C. & Van de Ven, W. J. Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res.59, 19–23 (1999). CASPubMed Google Scholar
Nielsen, G. P. & Mandahl, N. Lipoma. In World Health Organization classification of tumours. Pathology and genetics of tumours of soft tissue and bone (eds Fletcher, C. D. M., Unni, K. K. & Mertens, F.) 19–46 (IARC Press, Lyon, 2002). Google Scholar
Petit, M. M. R., Mols, R., Schoenmakers, E. F., Mandahl, N. & Van de Ven W. J. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics36, 118–129 (1996). ArticleCASPubMed Google Scholar
Lemke, I., Rogalla, P. & Bullerdiek, J. A novel LPP fusion gene indicates the crucial role of truncated LPP proteins in lipomas and pulmonary chondroid hamartomas. Cytogenet. Cell Genet.95, 153–156 (2001). ArticleCASPubMed Google Scholar
Fedele, M. et al. Truncated and chimeric HMGI-C genes induce neoplastic transformation of NIH3T3 murine fibroblasts. Oncogene17, 413–418 (1998). ArticleCASPubMed Google Scholar
Mayr, C., Hemmann, M. T. & Bartel, D. P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science315, 1576–1579 (2007). References 47 and 48 demonstrate that HMGA2 expression is downregulated by let-7 miRNA. ArticleCASPubMedPubMed Central Google Scholar
Hebert, C., Norris, K., Scheper, M. A., Nikitakis, N. & Sauk, J. J. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Molecular Cancer6, 5–16 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Wang, T. et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer46, 336–347 (2007). ArticleCASPubMed Google Scholar
Borrmann, L., Wilkening, S. & Bullerdiek, J. The expression of HMGA genes is regulated by their 3′UTR. Oncogene20, 4537–4541 (2001). ArticleCASPubMed Google Scholar
Battista, S. et al. The expression of a truncated HMGI-C gene induces gigantism associated with lipomatosis. Cancer Res.59, 4793–4797 (1999). CASPubMed Google Scholar
Arlotta, P. et al. Transgenic mice expressing a truncated form of the high mobility group I-C protein develop adiposity and an abnormally high prevalence of lipomas. J. Biol. Chem.275, 14394–14400 (2000). ArticleCASPubMed Google Scholar
Fedele, M. et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene21, 3190–3198 (2002). ArticleCASPubMed Google Scholar
Zaidi, M. R., Okada, Y. & Chada, K. K. Misexpression of full-length HMGA2 induces benign mesenchymal tumors in mice. Cancer Res.66, 7453–7459 (2006). ArticleCASPubMed Google Scholar
Ligon, A. H. et al. Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. Am. J. Hum. Genet.76, 340–348 (2005). ArticleCASPubMed Google Scholar
Tallini, G. et al. HMGI-C and HMGI(Y) immunoreactivity correlates with cytogenetic abnormalities in lipomas, pulmonary chondroid hamartomas, endometrial polyps, and uterine leiomyomas and is compatible with rearrangement of the HMGI-C and HMGI(Y) genes. Lab. Invest.80, 359–369 (2000). ArticleCASPubMed Google Scholar
Sornberger, K. S. et al. Expression of HMGIY in three uterine leiomyomata with complex rearrangements of chromosome 6. Cancer Genet. Cytogenet.114, 9–16 (1999). ArticleCASPubMed Google Scholar
Kazmierczak, B. et al. A high frequency of tumors with rearrangements of genes of the HMGI(Y) family in a series of 191 pulmonary chondroid hamartomas. Genes Chromosomes Cancer26, 125–133 (1999). ArticleCASPubMed Google Scholar
Rohen, C. et al. Pleomorphic adenomas of the salivary glands: absence of HMGIY rearrangements. Cancer Genet. Cytogenet.111, 178–181 (1999). ArticleCASPubMed Google Scholar
Kazmierczak, B. et al. HMGY is the target of 6p21.3 rearrangements in various benign mesenchymal tumors. Gene Chromosomes Cancer23, 279–285 (1998). ArticleCAS Google Scholar
Rogalla, P., Blank, C., Helbig, R., Wosniok, W. & Bullerdiek, J. Significant correlation between the breakpoints of rare clonal aberrations in benign solid tumors and the assignment of HMGIY retropseudogenes. Cancer Genet. Cytogenet.130, 51–56 (2001). ArticleCASPubMed Google Scholar
Finelli, P. et al. The High Mobility Group A2 gene is amplified and overexpressed in human prolactinomas. Cancer Res.62, 2398–2405 (2002). CASPubMed Google Scholar
Pierantoni, G. M. et al. High-mobility group A2 gene expression is frequently induced in non-functioning pituitary adenomas (NFPAs), even in the absence of chromosome 12 polysomy. Endocr. Relat. Cancer12, 867–874 (2005). ArticleCASPubMed Google Scholar
Bettio, D. et al. Cytogenetic study of pituitary adenomas. Cancer Genet. Cytogenet.98, 131–136 (1997). ArticleCASPubMed Google Scholar
Finelli, P. et al. Non random trisomies of chromosomes 5, 8 and 12 in the prolactinoma subtype of pituitary adenomas: conventional cytogenetics and interphase FISH study. Int. J. Cancer86, 344–350 (2000). ArticleCASPubMed Google Scholar
Fedele, M. et al. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer lymphomas. Oncogene24, 3427–3435 (2005). ArticleCASPubMed Google Scholar
Bussemakers, M. J. G., Van de Ven, W. J. M., Debruyne, F. M. J. & Schalken, J. Identification of high mobility group protein I(Y) as potential progression marker for prostate cancer by differential hybridization analysis. Cancer Res.51, 606–611 (1991). CASPubMed Google Scholar
Tamimi, Y. et al. Increased expression of high mobility group protein I (Y) in high grade prostate cancer detemined by in situ hybridization. Cancer Res.53, 5512–5516 (1993). CASPubMed Google Scholar
Abe, N. et al. Pancreatic duct cell carcinomas express high levels of high mobility group I(Y) proteins. Cancer Res.60, 3117–3122 (2000). CASPubMed Google Scholar
Abe, N. et al. Diagnostic significance of high mobility group I(Y) protein expression in intraductal papillary mucinous tumors of the pancreas. Pancreas25, 198–204 (2002). ArticlePubMed Google Scholar
Chiappetta, G. et al. Detection of high mobility group I HMGI(Y) protein in the diagnosis of thyroid tumors: HMGI(Y) expression represents a potential diagnostic indicator of carcinoma. Cancer Res.58, 4193–4198 (1998). CASPubMed Google Scholar
Kim, S. J., Ryu, J. W. & Choi, D. S. The expression of the high mobility group I(Y) mRNA in thyroid cancers: useful tool of differential diagnosis of thyroid nodules. Korean J. Intern. Med.15, 71–75 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fedele, M. et al. Human colorectal carcinomas express high levels of high mobility group HMGI(Y) proteins. Cancer Res.56, 1896–1901 (1996). CASPubMed Google Scholar
Abe, N. et al. Determination of high mobility group I(Y) expression level in colorectal neoplasias: a potential diagnostic marker. Cancer Res.59, 1169–1174 (1999). CASPubMed Google Scholar
Chiappetta, G. et al. High mobility group HMGI(Y) protein expression in human colorectal hyperplastic and neoplastic diseases. Int. J. Cancer91, 147–151 (2001). ArticleCASPubMed Google Scholar
Balcerczak, M. et al. HMGI(Y) gene expression in colorectal cancer: comparison with some histological typing, grading, and clinical staging. Pathol. Res. Pract.199, 641–646 (2003). ArticleCASPubMed Google Scholar
Flohr, A. M. et al. High mobility group protein HMGA1 expression in breast cancer reveals a positive correlation with tumour grade. Histol. Histopathol.18, 999–1004 (2003). CASPubMed Google Scholar
Chiappetta, G. et al. HMGA1 protein overexpression in human breast carcinomas: correlation with ErbB2 expression. Clin. Cancer Res.10, 7637–7644 (2004). ArticleCASPubMed Google Scholar
Sarhadi, V. K. et al. Increased expression of high mobility group A proteins in lung cancer. J. Pathol.209, 206–212 (2006). ArticleCASPubMed Google Scholar
Masciullo, V. et al. HMGA1 protein over-expression is a frequent feature of epithelial ovarian carcinomas. Carcinogenesis24, 1191–1198 (2003). ArticleCASPubMed Google Scholar
Bandiera, A. et al. Expression of high mobility group I (HMGI) proteins in squamous intraepithelial lesions (SILs) of uterine cervix. Cancer Res.58, 426–431 (1998). CASPubMed Google Scholar
Tesfaye, A. et al. The high-mobility group A1 gene up-regulates cyclooxygenase 2 expression in uterine tumorigenesis. Cancer Res.67, 3998–4004 (2007). ArticleCASPubMed Google Scholar
Nam, E. S. et al. Expression of HMGI(Y) associated with malignant phenotype of human gastric tissue. Histopathology42, 466–471 (2003). ArticleCASPubMed Google Scholar
Rho, Y. S. et al. High mobility group HMGI(Y) protein expression in head and neck squamous cell carcinoma. Acta Otolaryngol.127, 76–81 (2007). ArticleCASPubMed Google Scholar
Abe, N. et al. An increased high-mobility group A2 expression level is associated with malignant phenotype in pancreatic exocrine tissue. Br. J. Cancer89, 2104–2109 (2003). ArticleCASPubMedPubMed Central Google Scholar
Meyer, B. et al. HMGA2 overexpression in non-small cell lung cancer. Mol. Carcinog.46, 503–511 (2007). ArticleCASPubMed Google Scholar
Miyazawa, J., Mitoro, A., Kawashiri, S., Chada, K. K. & Imai, K. Expression of mesenchyme-specific gene HMGA2 in squamous cell carcinomas of the oral cavity. Cancer Res.64, 2024–2029 (2004). ArticleCASPubMed Google Scholar
Franco, R. et al. Detection of high mobility group proteins A1 and A2 represents a valid diagnostic marker in testicular germ cell tumors. J. Pathol. (in the press).
Donato, G. et al. High mobility group A1 expression correlates with the histological grade of human glial tumors. Oncol. Rep.11, 1209–1213 (2004). CASPubMed Google Scholar
Akai, T. et al. High mobility group I-C protein in astrocytoma and glioblastoma. Pathol. Res. Pract.200, 619–624 (2004). ArticleCASPubMed Google Scholar
Abe, N. et al. High mobility group A1 is expressed in metastatic adenocarcinoma to the liver and intrahepatic cholangiocarcinoma, but not in hepatocellular carcinoma: its potential use in the diagnosis of liver neoplasms. J. Gastroenterol.38, 1144–1149 (2003). ArticleCASPubMed Google Scholar
Chuma, M. et al. Expression profiling in hepatocellular carcinoma with intrahepatic metastasis: identification of high-mobility group I(Y) protein as a molecular marker of hepatocellular carcinoma metastasis. Keio J. Med.53, 90–97 (2004). ArticleCASPubMed Google Scholar
Chang, Z. G. et al. Determination of high mobility group A1 (HMGA1) expression in hepatocellular carcinoma: a potential prognostic marker. Dig. Dis. Sci.50, 1764–1770 (2005). ArticleCASPubMed Google Scholar
Cleynen, I. et al. Transcriptional control of the human high mobility group A1 gene: basal and oncogenic Ras-regulated expression. Cancer Res.15, 4620–4629 (2007). Article Google Scholar
Santulli, L. et al. A 12q13 translocation involving the HMGI-C gene in one case of Richter's transformation of a chronic lymphocytic leukaemia. Cancer Genet. Cytogenet.119, 70–73 (2000). ArticleCASPubMed Google Scholar
Pierantoni, G. M. et al. HMGA2 locus rearrangement in a case of acute lymphoblastic leukemia. Int. J. Oncol.22, 363–367 (2003). Google Scholar
Andrieux, J. et al. Dysregulation and overexpression of HMGA2 in myelofibrosis with myeloid metaplasia. Genes Chromosomes Cancer39, 82–87 (2004). ArticleCASPubMed Google Scholar
Andrieux, J. et al. Cryptic 6p21.3 duplications and triplication involving HMGA1 partially masked by add 6p in four cases of myelodysplasia. Cancer Gene Cytogenet.164, 84–87 (2006). ArticleCAS Google Scholar
Odero, M. D. et al. Disruption and aberrant expression of HMGA2 as a consequence of diverse chromosomal translocations in myeloid malignancies. Leukemia19, 245–252 (2005). ArticleCASPubMed Google Scholar
Baldassarre, G. et al. Onset of natural killer cell lymphomas in transgenic mice carrying a truncated HMGI-C gene by the chronic stimulation of the IL-2 and IL-15 pathway. Proc. Natl Acad. Sci. USA.98, 7970–7975 (2001). ArticleCASPubMedPubMed Central Google Scholar
Xu, Y. et al. The HMG-I oncogene causes highly penetrant, aggressive lymphoid malignancy in transgenic mice and is overexpressed in human leukemia. Cancer Res.64, 3371–3375 (2004). ArticleCASPubMed Google Scholar
Fedele, M. et al. Haploinsufficiency of the Hmga1 gene causes cardiac hypertrophy and myelo-lymphoproliferative disorders in mice. Cancer Res.66, 2536–2543 (2006). Describes the generation of knockout mice for theHmga1gene and demonstratesin vivoits potential tumour suppressor role. ArticleCASPubMed Google Scholar
Narita, M. et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell126, 503–514 (2006). Demonstrates that HMGA proteins are essential structural components of the senescence machinery, implying that they also act in tumour suppressor networks. ArticleCASPubMed Google Scholar
Li, Y., Lu, J. & Prochownik E. V. Dual role for for SUMO E2 conjugase Ubc9 in modulating the transforming and growth-promoting properties of the HMGA1b architectural transcription factor. J. Biol. Chem.282, 13363–13371 (2007). ArticleCASPubMed Google Scholar
Evan, G. I., Brown, L., Whyte, M. & Harrington, E. Apoptosis and the cell cycle. Curr. Opin. Cell Biol.7, 825–834 (1995). ArticleCASPubMed Google Scholar
Seville, L. L., Shah, N., Westwell, A. D. & Chan, W. C. Modulation of pRB/E2F functions in the regulation of cell cycle and in cancer. Curr. Cancer Drug Targets.5, 159–170 (2005). ArticleCASPubMed Google Scholar
Fedele, M. et al. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell9, 459–471 (2006). This paper describes a mechanism, dependent on the binding of HMGA2 to the Retinoblastoma protein, by which HMGA2 activates E2F1 and induces pituitary adenomas in mice. ArticleCASPubMed Google Scholar
Pagano, M., Pepperkok, R., Verde, F., Ansorge, W. & Draetta, G. Cyclin A is required at two points in the human cell cycle. EMBO J.11, 961–971 (1992). ArticleCASPubMedPubMed Central Google Scholar
Tessari, M. A. et al. Transcriptional activation of the cyclin A gene by architectural transcriptional factor HMGA2. Mol. Cell Biol.23, 9104–9116 (2003). ArticleCASPubMedPubMed Central Google Scholar
Angel, P. & Karin, M. The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim. Biophys. Acta1072, 129–157 (1991). CASPubMed Google Scholar
Karin, M., Liu, Z. & Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol.9, 240–246 (1997). ArticleCASPubMed Google Scholar
Vallone, D. et al. Neoplastic transformation of rat thyroid cells requires the JunB and Fra1 gene induction which is dependent on the HMGI-C gene products. EMBO J.17, 5310–5321 (1997). Article Google Scholar
Casalino, L. et al. Fra-1 promotes growth and survival in RAS-transformed thyroid cells by controlling cyclin A transcription. EMBO J.26, 1878–1890 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chiappetta, G. et al. FRA-1 protein detection is associated with thyroid proliferative disorders. Clin. Cancer Res.6, 4300–4306 (2000). CASPubMed Google Scholar
Chiappetta, G. et al. FRA-1 protein overexpression is a feature of hyperplastic and neoplastic breast disorders. BMC Cancer7, 17 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Dhar, A., Hu, J., Reeves, R., Resar, L. M. & Colburn, N. H. Dominant-negative c-Jun (TAM67) target genes: HMGA1 is required for tumor promoter-induced transformation. Oncogene23, 4466–4476, (2004). ArticleCASPubMed Google Scholar
Hommura, F. et al. HMG-I/Y is a c-Jun/activator protein-1 target gene and is necessary for c-Jun-induced anchorage-independent growth in Rat1a cells. Mol. Cancer Res.2, 305–314 (2004). CASPubMed Google Scholar
Pierantoni, G. M. et al. High Mobility Group A1 (HMGA1) proteins interact with p53 and inhibit its apoptotic activity. Cell Death Differ.13, 1554–1563 (2006). ArticleCASPubMed Google Scholar
Frasca, F. et al. HMGA1 inhibits the function of p53 family members in thyroid cancer cells. Cancer Res.66, 2980–2989 (2006). ArticleCASPubMed Google Scholar
Pierantoni, G. M. et al. High-mobility group A1 inhibits p53 by cytoplasmic relocalization of its proapoptotic activator HIPK2. J. Clin. Invest.117, 693–702 (2007). Describes a novel mechanism through which HMGA1 could exert its oncogenic activity: HMGA1 inhibits p53-mediated apoptosis by promoting cytoplasmic relocalization of the p53 proapoptotic activator HIPK2. ArticleCASPubMedPubMed Central Google Scholar
Subramanian, D. & Griffith, J. D. Interactions between p53, hMSH2-hMSH6 and HMGI(Y) on Holliday junctions and bulged bases. Nucleic Acids Res.30, 2427–2434 (2002). ArticleCASPubMedPubMed Central Google Scholar
Reeves, R. & Adair, J. E. Role of high mobility group (HMG) chromatin proteins in DNA repair. DNA Repair4, 926–938 (2005). ArticleCASPubMed Google Scholar
Borrmann, L. et al. High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity. Nucleic Acids Res.31, 6841–6851 (2003). ArticleCASPubMedPubMed Central Google Scholar
Baldassarre, G. et al. Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. Mol. Cell Biol.23, 2225–2238 (2003). ArticlePubMedPubMed CentralCAS Google Scholar
Baldassarre, G. et al. HMGA1 protein expression sensitizes cells to cisplatin-induced cell death. Oncogene24, 6809–6819 (2005). ArticleCASPubMed Google Scholar
Boo, L. M. et al. High mobility group A2 potentiates genotoxic stress in part through the modulation of basal and DNA damage-dependent phosphatidylinositol 3-kinase-related protein kinase activation. Cancer Res.65, 6622–6630 (2005). ArticleCASPubMed Google Scholar
Perrella, M. A. et al. High mobility group-I(Y) protein facilitates nuclear factor-κB binding and transactivation of the inducible nitric-oxide synthase promoter/enhancer. J. Biol. Chem.274, 9045–9052 (1999). ArticleCASPubMed Google Scholar
Ji, Y. S., Xu, Q. & Schmedtje, J. F. Jr. Hypoxia induces high-mobility-group protein I(Y) and transcription of the cyclooxygenase-2 gene in human vascular endothelium. Circ. Res.83, 295–304 (1998). ArticleCASPubMed Google Scholar
Whitley, M. Z., Thanos, D., Read, M. A., Maniatis, T. & Collins, T. A striking similarity in the organization of the E-selectin and β interferon gene promoters. Mol. Cell Biol.14, 6464–6475 (1994). ArticleCASPubMedPubMed Central Google Scholar
Kim, J., Reeves, R., Rothman, P. & Boothby, M. The non-histone chromosomal protein HMG-I(Y) contributes to repression of the immunoglobulin heavy chain germ-line epsilon RNA promoter. Eur. J. Immunol.25, 798–808 (1995). ArticleCASPubMed Google Scholar
Chuvpilo, S. et al. Multiple closely-linked NFAT/octamer and HMG I(Y) binding sites are part of the interleukin-4 promoter. Nucleic Acids Res.21, 5694–5704 (1993). ArticleCASPubMedPubMed Central Google Scholar
Himes, S. R., Coles, L. S., Reeves, R. & Shannon, M. F. High mobility group protein I(Y) is required for function and for c-Rel binding to CD28 response elements within the GM-CSF and IL-2 promoters. Immunity5, 479–489 (1996). ArticleCASPubMed Google Scholar
Kim, H. P., Kelly, J. & Leonard, W. J. The basis for IL-2-induced IL-2 receptor α chain gene regulation: importance of two widely separated IL-2 response elements. Immunity15, 159–172 (2001). ArticleCASPubMed Google Scholar
Mantovani, F. et al. NF-κB mediated transcriptional activation is enhanced by the architectural factor HMGI.-C. Nucleic Acids Res.26, 1433–1439 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X. M. & Verdine, G. L. A small region in HMG I(Y) is critical for cooperation with NF-κB on DNA. J. Biol. Chem.274, 20235–20243 (1999). ArticleCASPubMed Google Scholar
Bogdan, C. Nitric oxide and the immune response. Nature Immunol.2, 907–916 (2001). ArticleCAS Google Scholar
Geller, D. A. & Billiar, T. R. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev.17, 7–23 (1998). ArticleCASPubMed Google Scholar
Tsujii, M., Kawano, S. & DuBois, R. N. Cycloxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc. Natl Acad. Sci. USA94, 3336–3340 (1997). ArticleCASPubMedPubMed Central Google Scholar
Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol.17, 548–558 (2005). ArticleCASPubMed Google Scholar
Thuault, S., Valcourt, U., Petersen, M., Manfioletti. G., Heldin, C. H. & Moustakas, A. Transforming growth factor-β employs HMGA2 to elicit epithelial-mesenchymal transition. J. Cell Biol.174, 175–183 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pallante, P. et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer13, 497–508 (2006). ArticleCASPubMed Google Scholar
Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA.103, 2257–2261 (2006). ArticleCASPubMedPubMed Central Google Scholar
Langelotz, C. et al. Expression of high-mobility-group-protein HMGI-C mRNA in the peripheral blood is an independent poor prognostic indicator for survival in metastatic breast cancer. Br. J. Cancer88, 1406–1410 (2003). ArticleCASPubMedPubMed Central Google Scholar
Trapasso, F. et al. Therapy of human pancreatic carcinoma based on suppression of HMGA1 protein synthesis in preclinical models. Cancer Gene Ther.11, 633–641 (2004). ArticleCASPubMed Google Scholar
Liau, S. S., Jazag, A. & Whang, E. E. HMGA1 is a determinant of cellular invasiveness and in vivo metastatic potential in pancreatic adenocarcinoma. Cancer Res.66, 11613–11622 (2006). ArticleCASPubMed Google Scholar
Chin, M. T. et al. Enhancement of serum-response factor-dependent transcription and DNA binding by the architectural transcription factor HMG-I(Y). J. Biol. Chem.27, 9755–9760 (1998). Article Google Scholar
Galande, S. Chromatin (dis)organization and cancer: BUR-binding proteins as biomarkers for cancer. Curr. Cancer Drug Targets2, 157–190 (2002). ArticleCASPubMed Google Scholar
Zhao, K., Käs, E., Gonzalez, E. & Laemmli, U. K. SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro: HMG-I/Y is enriched in H1-depleted chromatin. EMBO J.12, 3237–3247 (1993). ArticleCASPubMedPubMed Central Google Scholar
Foti, D. et al. Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nature Med.11, 765–773 (2005). ArticleCASPubMed Google Scholar
D'Orazi, G. et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nature Cell Biol.4, 11–19 (2002). ArticleCASPubMed Google Scholar