A Bcl-xL–Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis (original) (raw)
Adams, J. M. & Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene26, 1324–1337 (2007). ArticleCAS Google Scholar
Banasiak, K. J., Xia, Y. & Haddad, G. G. Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog. Neurobiol.62, 215–249 (2000). ArticleCAS Google Scholar
Youle, R. J. & Strasser, A. The Bcl-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol.9, 47–59 (2008). ArticleCAS Google Scholar
Fannjiang, Y. et al. BAK alters neuronal excitability and can switch from anti- to pro-death function during postnatal development. Dev. Cell4, 575–585 (2003). ArticleCAS Google Scholar
Kim, H. et al. Hierarchical regulation of mitochondrion-dependent apoptosis by Bcl-2 subfamilies.. Nat. Cell Biol.8, 1348–1358 (2006). ArticleCAS Google Scholar
Wang, C. & Youle, R. J. The role of mitochondria in apoptosis*. Annu. Rev. Genet.43, 95–118 (2009). ArticleCAS Google Scholar
Hardwick, J. M. & Youle, R. J. SnapShot: Bcl-2 proteins. Cell138, 404 (2009). ArticleCAS Google Scholar
Krajewska, M. et al. Dynamics of expression of apoptosis-regulatory proteins Bid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervous system. Cell Death Differ.9, 145–157 (2002). ArticleCAS Google Scholar
Li, H. et al. Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA105, 2169–2174 (2008). ArticleCAS Google Scholar
Jonas, E. A. et al. Modulation of synaptic transmission by the Bcl-2 family protein BCL-xL. J. Neurosci.23, 8423–8431 (2003). ArticleCAS Google Scholar
Hickman, J. A., Hardwick, J. M., Kaczmarek, L. K. & Jonas, E. A. Bcl-xL inhibitor ABT-737 reveals a dual role for Bcl-xL in synaptic transmission. J. Neurophysiol.99, 1515–1522 (2008). ArticleCAS Google Scholar
Alavian, K. N. et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol.13, 1224–1233 (2011). ArticleCAS Google Scholar
Verstreken, P. et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron47, 365–378 (2005). ArticleCAS Google Scholar
Blondeau, F. et al. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc. Natl Acad. Sci. USA101, 3833–3838 (2004). ArticleCAS Google Scholar
Dittman, J. & Ryan, T. A. Molecular circuitry of endocytosis at nerve terminals. Annu. Rev. Cell Dev. Biol.25, 133–160 (2009). ArticleCAS Google Scholar
Slepnev, V. I., Ochoa, G. C., Butler, M. H., Grabs, D. & De Camilli, P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science281, 821–824 (1998). ArticleCAS Google Scholar
Sakaba, T. & Neher, E. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron32, 1119–1131 (2001). ArticleCAS Google Scholar
Virmani, T., Atasoy, D. & Kavalali, E. T. Synaptic vesicle recycling adapts to chronic changes in activity. J. Neurosci.26, 2197–2206 (2006). ArticleCAS Google Scholar
Kidokoro, Y. et al. Synaptic vesicle pools and plasticity of synaptic transmission at the Drosophila synapse. Brain Res. Brain Res. Rev.47, 18–32 (2004). ArticleCAS Google Scholar
Sara, Y., Virmani, T., Deak, F., Liu, X. & Kavalali, E. T. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission.. Neuron45, 563–573 (2005). ArticleCAS Google Scholar
Kuromi, H. & Kidokoro, Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron20, 917–925 (1998). ArticleCAS Google Scholar
Kavalali, E. T. Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission. J. Physiol.585, 669–679 (2007). ArticleCAS Google Scholar
Sun, T. et al. The role of calcium/calmodulin-activated calcineurin in rapid and slow endocytosis at central synapses. J. Neurosci.30, 11838–11847 (2010). ArticleCAS Google Scholar
Wu, X. S. et al. Ca(2+) and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nature Neurosci.12, 1003–1010 (2009). ArticleCAS Google Scholar
Ryan, T. A. & Smith, S. J. Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron14, 983–989 (1995). ArticleCAS Google Scholar
Burrone, J., Li, Z. & Murthy, V. N. Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin. Nat. Protoc.1, 2970–2978 (2006). ArticleCAS Google Scholar
Fernandez-Alfonso, T. & Ryan, T. A. The kinetics of synaptic vesicle pool depletion at CNS synaptic terminals. Neuron41, 943–953 (2004). ArticleCAS Google Scholar
Sankaranarayanan, S., De Angelis, D., Rothman, J. E. & Ryan, T. A. The use of pHluorins for optical measurements of presynaptic activity. Biophys. J.79, 2199–2208 (2000). ArticleCAS Google Scholar
Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature394, 192–195 (1998). ArticleCAS Google Scholar
Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature435, 677–681 (2005). ArticleCAS Google Scholar
Chen, Y. B. et al. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J. Cell Biol.195, 263–276 (2011). ArticleCAS Google Scholar
Galluzzi, L., Blomgren, K. & Kroemer, G. Mitochondrial membrane permeabilization in neuronal injury. Nat. Rev. Neurosci.10, 481–494 (2009). ArticleCAS Google Scholar
Kaufmann, T. et al. Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J. Cell Biol.160, 53–64 (2003). ArticleCAS Google Scholar
Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis.. Science275, 1132–1136 (1997). ArticleCAS Google Scholar
Hsu, Y. T., Wolter, K. G. & Youle, R. J. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl Acad. Sci. USA94, 3668–3672 (1997). ArticleCAS Google Scholar
Berman, S. B. et al. Bcl-xL increases mitochondrial fission, fusion, and biomass in neurons. J. Cell Biol.184, 707–719 (2009). ArticleCAS Google Scholar
Bossy-Wetzel, E., Barsoum, M. J., Godzik, A., Schwarzenbacher, R. & Lipton, S. A. Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr. Opin. Cell Biol.15, 706–716 (2003). ArticleCAS Google Scholar
Karbowski, M. et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol.159, 931–938 (2002). ArticleCAS Google Scholar
Karbowski, M. & Youle, R. J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ.10, 870–880 (2003). ArticleCAS Google Scholar
Shaw, J. M. & Nunnari, J. Mitochondrial dynamics and division in budding yeast. Trends Cell Biol.12, 178–184 (2002). ArticleCAS Google Scholar
Karbowski, M., Neutzner, A. & Youle, R. J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol.178, 71–84 (2007). ArticleCAS Google Scholar
Uo, T. et al. Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons. Exp.Neurol.218, 274–285 (2009). ArticleCAS Google Scholar
Otera, H. et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol.191, 1141–1158 (2010). ArticleCAS Google Scholar
Lenzi, D., Crum, J., Ellisman, M. H. & Roberts, W. M. Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron36, 649–659 (2002). ArticleCAS Google Scholar
Lu, Y., Rolland, S. G. & Conradt, B. A molecular switch that governs mitochondrial fusion and fission mediated by the BCL2-like protein CED-9 of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA108, E813–E822 (2011). ArticleCAS Google Scholar
Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell119, 873–887 (2004). ArticleCAS Google Scholar
Pang, Z. P., Cao, P., Xu, W. & Sudhof, T. C. Calmodulin controls synaptic strength via presynaptic activation of calmodulin kinase II. J. Neurosci.30, 4132–4142.
Rostovtseva, T. K. et al. Bax activates endophilin B1 oligomerization and lipid membrane vesiculation. J. Biol. Chem.284, 34390–34399 (2009). ArticleCAS Google Scholar
Jonas, E. A. et al. Proapoptotic N-truncated BCL-xL protein activates endogenous mitochondrial channels in living synaptic terminals. Proc. Natl Acad. Sci. USA101, 13590–13595 (2004). ArticleCAS Google Scholar
Basanez, G. et al. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J. Biol. Chem.277, 49360–49365 (2002). ArticleCAS Google Scholar
Basanez, G. et al. Pro-apoptotic cleavage products of Bcl-xL form cytochrome c-conducting pores in pure lipid membranes. J. Biol. Chem.276, 31083–31091 (2001). ArticleCAS Google Scholar
Karbowski, M., Jeong, S. Y. & Youle, R. J. Endophilin B1 is required for the maintenance of mitochondrial morphology. J. Cell Biol.166, 1027–1039 (2004). ArticleCAS Google Scholar
Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol.155, 193–200 (2001). ArticleCAS Google Scholar
Ringstad, N. et al. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron24, 143–154 (1999). ArticleCAS Google Scholar
Schuske, K. R. et al. Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron40, 749–762 (2003). ArticleCAS Google Scholar
Milosevic, I. et al. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron72, 587–601 (2011). ArticleCAS Google Scholar
Morgan, J. R., Augustine, G. J. & Lafer, E. M. Synaptic vesicle endocytosis: the races, places, and molecular faces. Neuromol. Med.2, 101–114 (2002). ArticleCAS Google Scholar
Krueger, S. R., Kolar, A. & Fitzsimonds, R. M. The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile within isolated axons. Neuron40, 945–957 (2003). ArticleCAS Google Scholar
Brewer, G. J. Isolation and culture of adult rat hippocampal neurons. J. Neurosci. Methods71, 143–155 (1997). ArticleCAS Google Scholar
Lois, C., Hong, E. J., Pease, S., Brown, E. J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science295, 868–872 (2002). ArticleCAS Google Scholar
Allen, T. G. Preparation and maintenance of single-cell micro-island cultures of basal forebrain neurons. Nat. Protoc.1, 2543–2550 (2006). ArticleCAS Google Scholar
Komai, S. et al. Postsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development. Nat. Neurosci.9, 1125–1133 (2006). ArticleCAS Google Scholar
Tokuyasu, K. T. A technique for ultracryotomy of cell suspensions and tissues. J. Cell Biol.57, 551–565 (1973). ArticleCAS Google Scholar