Establishment of totipotency does not depend on Oct4A (original) (raw)
Mitalipov, S. & Wolf, D. Totipotency, pluripotency and nuclear reprogramming. Adv. Biochem. Eng. Biotechnol.114, 185–199 (2009). CASPubMedPubMed Central Google Scholar
Scholer, H. R., Hatzopoulos, A. K., Balling, R., Suzuki, N. & Gruss, P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J.8, 2543–2550 (1989). ArticleCASPubMedPubMed Central Google Scholar
Pesce, M. & Scholer, H. R. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells19, 271–278 (2001). ArticleCASPubMed Google Scholar
Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell95, 379–391 (1998). ArticleCASPubMed Google Scholar
Okumura-Nakanishi, S., Saito, M., Niwa, H. & Ishikawa, F. Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J. Biol. Chem.280, 5307–5317 (2005). ArticleCASPubMed Google Scholar
Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell133, 1106–1117 (2008). ArticleCASPubMed Google Scholar
Rodda, D. J. et al. Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem.280, 24731–24737 (2005). ArticleCASPubMed Google Scholar
Masui, S. et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol.9, 625–635 (2007). ArticleCASPubMed Google Scholar
Pesce, M., Marin Gomez, M., Philipsen, S. & Scholer, H. R. Binding of Sp1 and Sp3 transcription factors to the Oct-4 gene promoter. Cell Mol. Biol.45, 709–716 (1999). CASPubMed Google Scholar
Lee, J., Kim, H. K., Rho, J. Y., Han, Y. M. & Kim, J. The human OCT-4 isoformsdiffer in their ability to confer self-renewal. J. Biol. Chem.281, 33554–33565 (2006). ArticleCASPubMed Google Scholar
Guo, C. L. et al. A novel variant of Oct3/4 gene in mouse embryonic stem cells. Stem Cell Res.9, 69–76 (2012). ArticleCASPubMed Google Scholar
Farashahi Yazd, E. et al. OCT4B1, a novel spliced variant of OCT4, generates a stable truncated protein with a potential role in stress response. Cancer Lett.309, 170–175 (2011). ArticlePubMed Google Scholar
Asadi, M. H. et al. OCT4B1, a novel spliced variant of OCT4, is highly expressed in gastric cancer and acts as an antiapoptotic factor. Int. J. Cancer128, 2645–2652 (2011). ArticleCASPubMed Google Scholar
Zuccotti, M. et al. Maternal Oct-4 is a potential key regulator of the developmental competence of mouse oocytes. BMC Dev. Biol.8, 97–110 (2008). ArticlePubMedPubMed Central Google Scholar
Foygel, K. et al. A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition. Plos One3, e4109 (2008). ArticlePubMedPubMed Central Google Scholar
Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature450, 1230–1234 (2007). ArticleCASPubMed Google Scholar
Yoshimizu, T. et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev. Growth Differ.41, 675–684 (1999). ArticleCASPubMed Google Scholar
Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet.24, 372–376 (2000). ArticleCASPubMed Google Scholar
Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell123, 917–929 (2005). ArticleCASPubMed Google Scholar
Yuan, P. et al. Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev.23, 2507–2520 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dietrich, J. E. & Hiiragi, T. Stochastic patterning in the mouse pre-implantation embryo. Development134, 4219–4231 (2007). ArticleCASPubMed Google Scholar
Lu, C. W. et al. Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos. Nat. Genet.40, 921–926 (2008). ArticleCASPubMedPubMed Central Google Scholar
Blij, S., Frum, T., Akyol, A., Fearon, E. & Ralston, A. Maternal Cdx2 is dispensable for mouse development. Development139, 3969–3972 (2012). ArticleCASPubMedPubMed Central Google Scholar
Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development132, 2093–2102 (2005). ArticleCASPubMed Google Scholar
Wu, G. et al. Initiation of trophectoderm lineage specification in mouse embryos is independent of Cdx2. Development137, 4159–4169 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ralston, A. et al. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development137, 395–403 (2010). ArticleCASPubMed Google Scholar
Kuroda, T. et al. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol. Cell Biol.25, 2475–2485 (2005). ArticleCASPubMedPubMed Central Google Scholar
Szabo, P. E., Hubner, K., Scholer, H. & Mann, J. R. Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech. Dev.115, 157–160 (2002). ArticleCASPubMed Google Scholar
Adachi, K. & Scholer, H. R. Directing reprogramming to pluripotency by transcription factors. Curr. Opin. Genet. Dev.22, 1–7 (2012). Article Google Scholar
Heng, J. C. et al. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell6, 167–174 (2010). ArticleCASPubMed Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCASPubMed Google Scholar
Gu, P. et al. Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Mol. Cell Biol.25, 3492–3505 (2005). ArticleCASPubMedPubMed Central Google Scholar
Guo, G. & Smith, A. A genome-wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state pluripotency. Development137, 3185–3192 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chapman, D. L. et al. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev. Dyn.206, 379–390 (1996). ArticleCASPubMed Google Scholar
Campbell, K. H., McWhir, J., Ritchie, W. A. & Wilmut, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature380, 64–66 (1996). ArticleCASPubMed Google Scholar
De Vries, W. N. et al. Expression of Cre recombinase in mouse oocytes: a means to study maternal effect genes. Genesis26, 110–112 (2000). ArticleCASPubMed Google Scholar
Lan, Z. J., Xu, X. & Cooney, A. J. Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice. Biol. Reprod.71, 1469–1474 (2004). ArticleCASPubMed Google Scholar
El-Hashemite, N., Wells, D. & Delhanty, J. D. Single cell detection of beta-thalassaemia mutations using silver stained SSCP analysis: an application for preimplantation diagnosis. Mol. Hum. Reprod.3, 693–698 (1997). ArticleCASPubMed Google Scholar
Hogan, B. Manipulating The Mouse Embryo : A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, 1994). Google Scholar
Palmieri, S. L., Peter, W., Hess,, H. & Scholer, H. R. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev. Biol.166, 259–267 (1994). ArticleCASPubMed Google Scholar
Boiani, M. et al. Variable reprogramming of the pluripotent stem cell marker Oct4 in mouse clones: distinct developmental potentials in different culture environments. Stem Cells23, 1089–1104 (2005). ArticleCASPubMed Google Scholar
Ho, Y., Wigglesworth, K., Eppig, J. J. & Schultz, R. M. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev.41, 232–238 (1995). ArticleCASPubMed Google Scholar
Nagy, A. Manipulating The Mouse Embryo : A Laboratory Manual 3rd edn (Cold Spring Harbor Laboratory Press, 2003). Google Scholar
Long, J. Z., Lackan, C. S. & Hadjantonakis, A. K. Genetic and spectrally distinct in vivo imaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein. BMC Biotechnol.5, 20–30 (2005). ArticlePubMedPubMed Central Google Scholar
Bryja, V., Bonilla, S. & Arenas, E. Derivation of mouse embryonic stem cells. Nat. Protoc.1, 2082–2087 (2006). ArticleCASPubMed Google Scholar
Kim, J. B. et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature454, 646–650 (2008). ArticleCASPubMed Google Scholar
Wu, G. et al. Efficient derivation of pluripotent stem cells from siRNA-mediated Cdx2-deficient mouse embryos. Stem Cells Dev.20, 485–493 (2011). ArticleCASPubMed Google Scholar
Wu, G. et al. Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells. PLoS Biol.9, e1001099 (2011). ArticleCASPubMedPubMed Central Google Scholar