XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules (original) (raw)

References

  1. Walczak, C. E. & Heald, R. Mechanisms of mitotic spindle assembly and function. Int. Rev. Cytol. 265, 111–158 (2008).
    Article CAS PubMed Google Scholar
  2. Gatlin, J. C. & Bloom, K. Microtubule motors in eukaryotic spindle assembly and maintenance. Semin. Cell Dev. Biol. 21, 248–254 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  3. Kinoshita, K., Arnal, I., Desai, A., Drechsel, D. N. & Hyman, A. A. Reconstitution of physiological microtubule dynamics using purified components. Science 294, 1340–1343 (2001).
    Article CAS PubMed Google Scholar
  4. Brouhard, G. J. et al. XMAP215 is a processive microtubule polymerase. Cell 132, 79–88 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  5. Levy, D. L. & Heald, R. Mechanisms of intracellular scaling. Annu. Rev. Cell Dev. Biol. 28, 113–135 (2012).
    Article CAS PubMed Google Scholar
  6. Chan, Y-H. M. & Marshall, W. F. How cells know the size of their organelles. Science 337, 1186–1189 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  7. Goehring, N. W. & Hyman, A. A. Organelle growth control through limiting pools of cytoplasmic components. Curr. Biol. 22, R330–R9 (2012).
    Article CAS PubMed Google Scholar
  8. Goshima, G., Wollman, R., Stuurman, N., Scholey, J. M. & Vale, R. D. Length control of the metaphase spindle. Curr. Biol. 15, 1979–1988 (2005).
    Article CAS PubMed Google Scholar
  9. Burbank, K. S., Mitchison, T. J. & Fisher, D. S. Slide-and-cluster models for spindle assembly. Curr. Biol. 17, 1373–1383 (2007).
    Article CAS PubMed Google Scholar
  10. Loughlin, R., Wilbur, J. D., McNally, F. J., Nédélec, F. J. & Heald, R. Katanin contributes to interspecies spindle length scaling in Xenopus. Cell 147, 1397–1407 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  11. Brugués, J., Nuzzo, V., Mazur, E. & Needleman, D. J. Nucleation and transport organize microtubules in metaphase spindles. Cell 149, 554–564 (2012).
    Article PubMed Google Scholar
  12. Shimamoto, Y., Maeda, Y. T., Ishiwata, S., Libchaber, A. J. & Kapoor, T. M. Insights into the micromechanical properties of the metaphase spindle. Cell 145, 1062–1074 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  13. Mitchison, T. J. T. et al. Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles. Mol. Biol. Cell 16, 3064–3076 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  14. Needleman, D. J. et al. Fast microtubule dynamics in meiotic spindles measured by single molecule imaging: evidence that the spindle environment does not stabilize microtubules. Mol. Biol. Cell 21, 323–333 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  15. Yang, G. G. et al. Architectural dynamics of the meiotic spindle revealed by single-fluorophore imaging. Nat. Cell Biol. 9, 1233–1242 (2007).
    Article CAS PubMed Google Scholar
  16. Howard, J. & Hyman, A. A. Microtubule polymerases and depolymerases. Curr. Opin. Cell Biol. 19, 31–35 (2007).
    Article CAS PubMed Google Scholar
  17. Al-Bassam, J. & Chang, F. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. Trends Cell Biol. 21, 604–614 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  18. Widlund, P. O. et al. XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region. Proc. Natl Acad. Sci. 108, 2741–2746 (2011).
    Article CAS PubMed Google Scholar
  19. Kinoshita, K. Aurora A phosphorylation of TACC3/maskin is required forcentrosome-dependent microtubule assembly in mitosis. J. Cell Biol. 170, 1047–1055 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  20. Zanic, M., Stear, J. H., Hyman, A. A. & Howard, J. EB1 recognizes the nucleotide state of tubulin in the microtubule lattice. PLoS ONE 4, e7585 (2009).
    Article PubMed PubMed Central Google Scholar
  21. Maurer, S. P., Fourniol, F. J., Bohner, G., Moores, C. A. & Surrey, T. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell 149, 371–382 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  22. Wuehr, M. et al. Evidence for an upper limit to mitotic spindle length. Curr. Biol. 18, 1256–1261 (2008).
    Article CAS Google Scholar
  23. Hamada, T., Itoh, T. J., Hashimoto, T., Shimmen, T. & Sonobe, S. GTP is required for the microtubule catastrophe-inducing activity of MAP200, a tobacco homolog of XMAP215. Plant Physiol. 151, 1823–1830 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  24. Popov, A. V., Severin, F. & Karsenti, E. XMAP215 is required for the microtubule-nucleating activity of centrosomes. Curr. Biol. 12, 1326–1330 (2002).
    Article CAS PubMed Google Scholar
  25. Groen, A. C., Maresca, T. J., Gatlin, J. C., Salmon, E. D. & Mitchison, T. J. Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly. Mol. Biol. Cell 20, 2766–2773 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  26. Slep, K. C. & Vale, R. D. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol. Cell 27, 976–991 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  27. Vasquez, R. J., Gard, D. L. & Cassimeris, L. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J. Cell Biol. 127, 985–993 (1994).
    Article CAS PubMed Google Scholar
  28. Walker, R. A. et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107, 1437–1448 (1988).
    Article CAS PubMed Google Scholar
  29. Verde, F., Dogterom, M., Stelzer, E., Karsenti, E. & Leibler, S. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J. Cell Biol. 118, 1097–1108 (1992).
    Article CAS PubMed Google Scholar
  30. Dogterom, M. & Leibler, S. Physical aspects of the growth and regulation of microtubule structures. Phys. Rev. Lett. 70, 1347–1350 (1993).
    Article CAS PubMed Google Scholar
  31. Loughlin, R., Heald, R. & Nedelec, F. A computational model predicts Xenopus meiotic spindle organization. J. Cell Biol. 191, 1239–1249 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  32. Hyman, A. & Karsenti, E. The role of nucleation in patterning microtubule networks. J. Cell Sci. 111, 2077–2083 (1998) Pt 15.
    CAS PubMed Google Scholar
  33. Gruss, O. J. The mechanism of spindle assembly: functions of Ran and its target TPX2. J. Cell Biol. 166, 949–955 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  34. Petry, S., Pugieux, C., Nédélec, F. J. & Vale, R. D. Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts. Proc. Natl Acad. Sci. USA 108, 14473–14478 (2011).
    Article CAS PubMed Google Scholar
  35. Gatlin, J. C., Matov, A., Danuser, G., Mitchison, T. J. & Salmon, E. D. Directly probing the mechanical properties of the spindle and its matrix. J. Cell Biol. 188, 481–489 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  36. Itabashi, T. et al. Probing the mechanical architecture of the vertebrate meiotic spindle. Nat. Methods 6, 167–172 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  37. Inoué, S. Microtubule dynamics in cell division: exploring living cells with polarized light microscopy. Annu. Rev. Cell Dev. Biol. 24, 1–28 (2008).
    Article PubMed Google Scholar
  38. Mitchison, T. J. et al. Bipolarization and poleward flux correlate during Xenopus extract spindle assembly. Mol. Biol. Cell 15, 5603–5615 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  39. Isenberg, I. On the theory of the nematic phase and its possible relation to the mitotic spindle structure. Bull. Math. Biophys. 16, 83–96 (1954).
    Article Google Scholar
  40. Hannak, E. & Heald, R. Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts. Nat. Protoc. 1, 2305–2314 (2006).
    Article CAS PubMed Google Scholar
  41. Hyman, A. et al. Preparation of modified tubulins. Methods Enzymol. 196, 478–485 (1991).
    Article CAS PubMed Google Scholar
  42. Gell, C. et al. Purification of tubulin from porcine brain. Methods Mol. Biol. 777, 15–28 (2011).
    Article CAS PubMed Google Scholar
  43. Reber, S., Over, S., Kronja, I. & Gruss, O. J. CaM kinase II initiates meiotic spindle depolymerization independently of APC/C activation. J. Cell Biol. 183, 1007–1017 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  44. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).
    Article CAS PubMed Google Scholar
  45. Kalaidzidis, L. Y., Gavrilov, A. V., Zaitsev, P. V., Kalaidzidis, A. L. & Korolev, E. V. PLUK—an environment for software development. Prog. Comput. Softw. 23, 206–211 (1997).
    Google Scholar
  46. Mirny, L. A. & Needleman, D. J. Quantitative characterization of filament dynamics by single-molecule lifetime measurements. Methods Cell Biol. 95, 583–600 (2010).
    CAS PubMed Google Scholar
  47. Wilde, A. et al. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat. Cell Biol. 3, 221–227 (2001).
    Article CAS PubMed Google Scholar
  48. Brown, K. S. et al. Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. J. Cell Biol. 176, 765–770 (2007).
    Article CAS PubMed PubMed Central Google Scholar

Download references