Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis (original) (raw)
Coux, O., Tanaka, K. & Goldberg, A. L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem.65, 801–847 (1996). CASPubMed Google Scholar
Tai, H. C. & Schuman, E. M. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci.9, 826–838 (2008). CASPubMed Google Scholar
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell153, 1194–1217 (2013). PubMedPubMed Central Google Scholar
Hoeller, D. & Dikic, I. Targeting the ubiquitin system in cancer therapy. Nature458, 438–444 (2009). CASPubMed Google Scholar
Orlowski, R. Z. & Kuhn, D. J. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin. Cancer Res.14, 1649–1657 (2008). CASPubMed Google Scholar
Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem.78, 477–513 (2009). CASPubMedPubMed Central Google Scholar
Bhattacharyya, S., Yu, H., Mim, C. & Matouschek, A. Regulated protein turnover: snapshots of the proteasome in action. Nat. Rev. Mol. Cell Biol.15, 122–133 (2014). CASPubMedPubMed Central Google Scholar
Ehlinger, A. & Walters, K. J. Structural insights into proteasome activation by the 19S regulatory particle. Biochemistry52, 3618–3628 (2013). CASPubMed Google Scholar
Murata, S., Yashiroda, H. & Tanaka, K. Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Biol.10, 104–115 (2009). CASPubMed Google Scholar
Schmidt, M. & Finley, D. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta1843, 13–25 (2014). CASPubMed Google Scholar
Radhakrishnan, S. K. et al. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell38, 17–28 (2010). CASPubMedPubMed Central Google Scholar
Tomko, R. J. & Hochstrasser, M. Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem.82, 415–445 (2013). CASPubMed Google Scholar
Wang, X. et al. Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry46, 3553–3565 (2007). CASPubMed Google Scholar
Wang, X. & Huang, L. Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol. Cell Proteomics7, 46–57 (2008). PubMed Google Scholar
Hershko, A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. Cell Biol.9, 788–799 (1997). CASPubMed Google Scholar
Teixeira, L. K. & Reed, S. I. Ubiquitin ligases and cell cycle control. Annu. Rev. Biochem.82, 387–414 (2013). CASPubMed Google Scholar
Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science292, 1552–1555 (2001). CASPubMed Google Scholar
Min, M. & Lindon, C. Substrate targeting by the ubiquitin–proteasome system in mitosis. Semin. Cell Dev. Biol.23, 482–491 (2012). CASPubMed Google Scholar
Dephoure, N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA105, 10762–10767 (2008). CASPubMed Google Scholar
Olsen, J. V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal.3, ra3 (2010). PubMed Google Scholar
Nagano, K. et al. Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics9, 2861–2874 (2009). CASPubMed Google Scholar
Kettenbach, A. N. et al. Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci. Signal.4, rs5 (2011). CASPubMed Google Scholar
Bian, Y. et al. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J. Proteomics96, 253–262 (2014). CASPubMed Google Scholar
Mayya, V. et al. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein–protein interactions. Sci. Signal.2, ra46 (2009). PubMed Google Scholar
Kisselev, A. F. & Goldberg, A. L. Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol.398, 364–378 (2005). CASPubMed Google Scholar
Besche, H. C. et al. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J.33, 1159–1176 (2014). CASPubMedPubMed Central Google Scholar
Taipale, M. et al. Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell150, 987–1001 (2012). CASPubMedPubMed Central Google Scholar
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science298, 1912–1934 (2002). CASPubMed Google Scholar
Djuranovic, S. et al. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell34, 580–590 (2009). CASPubMed Google Scholar
Beckwith, R., Estrin, E., Worden, E. J. & Martin, A. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA + unfoldase. Nat. Struct. Mol. Biol.20, 1164–1172 (2013). CASPubMedPubMed Central Google Scholar
Liu, C. W. et al. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol. Cell24, 39–50 (2006). CASPubMedPubMed Central Google Scholar
Smith, D. M. et al. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell20, 687–698 (2005). CASPubMed Google Scholar
Peth, A., Kukushkin, N., Bosse, M. & Goldberg, A. L. Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs. J. Biol. Chem.288, 7781–7790 (2013). CASPubMedPubMed Central Google Scholar
Śledź, P. et al. Structure of the 26S proteasome with ATP-γ S bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl Acad. Sci. USA110, 7264–7269 (2013). PubMed Google Scholar
Santarius, T., Shipley, J., Brewer, D., Stratton, M. R. & Cooper, C. S. A census of amplified and overexpressed human cancer genes. Nat. Rev. Cancer10, 59–64 (2010). CASPubMed Google Scholar
Györffy, B. et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res. Treat.123, 725–731 (2010). PubMed Google Scholar
Petrocca, F. et al. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell24, 182–196 (2013). CASPubMedPubMed Central Google Scholar
Vilchez, D. et al. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature489, 304–308 (2012). CASPubMedPubMed Central Google Scholar
Shabaneh, T. B. et al. Molecular basis of differential sensitivity of myeloma cells to clinically relevant bolus treatment with bortezomib. PLoS ONE8, e56132 (2013). CASPubMedPubMed Central Google Scholar
Mason, G. G., Murray, R. Z., Pappin, D. & Rivett, A. J. Phosphorylation of ATPase subunits of the 26S proteasome. FEBS Lett.430, 269–274 (1998). CASPubMed Google Scholar
Bose, S., Stratford, F. L., Broadfoot, K. I., Mason, G. G. & Rivett, A. J. Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem. J.378, 177–184 (2004). CASPubMedPubMed Central Google Scholar
Satoh, K., Sasajima, H., Nyoumura, K.-i., Yokosawa, H. & Sawada, H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry40, 314–319 (2000). Google Scholar
Feng, Y., Longo, D. L. & Ferris, D. K. Polo-like kinase interacts with proteasomes and regulates their activity. Cell Growth Differ.12, 29–37 (2001). CASPubMed Google Scholar
Zhang, F. et al. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J. Biol. Chem.282, 22460–22471 (2007). CASPubMed Google Scholar
Djakovic, S. N., Schwarz, L. A., Barylko, B., DeMartino, G. N. & Patrick, G. N. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem.284, 26655–26665 (2009). CASPubMedPubMed Central Google Scholar
Bingol, B. et al. Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines. Cell140, 567–578 (2010). CASPubMed Google Scholar
Djakovic, S. N. et al. Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J. Neurosci.32, 5126–5131 (2012). CASPubMedPubMed Central Google Scholar
Hamilton, A. M. et al. Activity-dependent growth of new dendritic spines is regulated by the proteasome. Neuron74, 1023–1030 (2012). CASPubMedPubMed Central Google Scholar
Ranek, M. J., Terpstra, E. J., Li, J., Kass, D. A. & Wang, X. Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation128, 365–376 (2013). CASPubMedPubMed Central Google Scholar
Aranda, S., Laguna, A. & de la Luna, S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J.25, 449–462 (2011). CASPubMed Google Scholar
Becker, W. Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control. Cell Cycle11, 3389–3394 (2012). CASPubMedPubMed Central Google Scholar
Lander, G. C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature482, 186–191 (2012). CASPubMedPubMed Central Google Scholar
da Fonseca, P. C. A., He, J. & Morris, E. P. Molecular model of the human 26S proteasome. Mol. Cell46, 54–66 (2012). PubMed Google Scholar
Matyskiela, M. E., Lander, G. C. & Martin, A. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol.20, 781–788 (2013). CASPubMedPubMed Central Google Scholar
Miller, C. T. et al. Amplification and overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) gene in esophageal and lung adenocarcinomas. Cancer Res.63, 4136–4143 (2003). CASPubMed Google Scholar
Bonifaci, N. et al. Exploring the link between germline and somatic genetic alterations in breast carcinogenesis. PLoS ONE5, e14078 (2010). PubMedPubMed Central Google Scholar
Gorringe, K. L., Boussioutas, A., Bowtell, D. D. & Melbourne Gastric Cancer Group, P. M. M. A. F. Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization. Genes Chromosomes Cancer42, 247–259 (2005). CASPubMed Google Scholar
Taira, N. et al. DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells. J. Clin. Invest.122, 859–872 (2012). CASPubMedPubMed Central Google Scholar
Guo, X. et al. Axin and GSK3-β control Smad3 protein stability and modulate TGF-β signaling. Genes Dev.22, 106–120 (2008). CASPubMedPubMed Central Google Scholar
Inobe, T., Fishbain, S., Prakash, S. & Matouschek, A. Defining the geometry of the two-component proteasome degron. Nat. Chem. Biol.7, 161167 (2011). Google Scholar
Fishbain, S. et al. Sequence composition of disordered regions fine-tunes protein half-life. Nat. Struct. Mol. Biol.22, 214221 (2015). Google Scholar
Soundararajan, M. et al. Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure21, 986–996 (2013). CASPubMedPubMed Central Google Scholar
Kaake, R. M., Milenković, T., Pržulj, N., Kaiser, P. & Huang, L. Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy. J. Proteome Res.9, 2016–2029 (2010). CASPubMedPubMed Central Google Scholar
Ong, S. E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc.1, 2650–2660 (2006). CASPubMed Google Scholar
Guo, X. et al. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc. Natl Acad. Sci. USA108, 18649–18654 (2011). CASPubMed Google Scholar
Smith, D. M., Fraga, H., Reis, C., Kafri, G. & Goldberg, A. L. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell144, 526–538 (2011). CASPubMedPubMed Central Google Scholar
Jacobson, A. D., MacFadden, A., Wu, Z., Peng, J. & Liu, C.-W. Autoregulation of the 26S proteasome by in situ ubiquitination. Mol. Biol. Cell25, 1824–1835 (2014). PubMedPubMed Central Google Scholar
Rape, M. & Kirschner, M. W. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature432, 588–595 (2004). CASPubMed Google Scholar