Akt regulates growth by directly phosphorylating Tsc2 (original) (raw)

References

  1. Gomez, M. R., Sampson, J. R. & Whittemore, V. H. Tuberous Sclerosis Complex (Oxford University Press, New York, 1999).
    Google Scholar
  2. Gomez, M. R. Tuberous Sclerosis (Raven Press, New York, 1988).
    Google Scholar
  3. van Slegtenhorst, M. et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277, 805–808 (1997).
    Article CAS Google Scholar
  4. Consortium, T. E. C. T. S. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75, 1305–1315 (1993).
    Article Google Scholar
  5. Maheshwar, M. M. et al. The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum. Mol. Genet. 6, 1991–1996 (1997).
    Article CAS Google Scholar
  6. Cheadle, J. P., Reeve, M. P., Sampson, J. R. & Kwiatkowski, D. J. Molecular genetic advances in tuberous sclerosis. Hum. Genet. 107, 97–114 (2000).
    Article CAS Google Scholar
  7. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).
    Article CAS Google Scholar
  8. van Slegtenhorst, M. et al. Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum. Mol. Genet. 7, 1053–1057 (1998).
    Article CAS Google Scholar
  9. Plank, T. L., Yeung, R. S. & Henske, E. P. Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res. 58, 4766–4770 (1998).
    CAS PubMed Google Scholar
  10. Nellist, M. et al. Characterization of the cytosolic tuberin–hamartin complex. Tuberin is a cytosolic chaperone for hamartin. J. Biol. Chem. 274, 35647–35652 (1999).
    Article CAS Google Scholar
  11. Miloloza, A. et al. The TSC1 gene product, hamartin, negatively regulates cell proliferation. Hum. Mol. Genet. 9, 1721–1727 (2000).
    Article CAS Google Scholar
  12. Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).
    CAS PubMed Google Scholar
  13. Theodosiou, N. A., Zhang, S., Wang, W. Y. & Xu, T. slimb coordinates wg and dpp expression in the dorsal–ventral and anterior–posterior axes during limb development. Development 125, 3411–3416 (1998).
    CAS PubMed Google Scholar
  14. Ito, N. & Rubin, G. M. gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle. Cell 96, 529–539 (1999).
    Article CAS Google Scholar
  15. Huang, H. et al. PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development 126, 5365–5372 (1999).
    CAS PubMed Google Scholar
  16. Oldham, S., Montagne, J., Radimerski, T., Thomas, G. & Hafen, E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 14, 2689–2694 (2000).
    Article CAS Google Scholar
  17. Gao, X., Neufeld, T. P. & Pan, D. Drosophila PTEN regulates cell growth and proliferation through PI3K-dependent and -independent pathways. Dev. Biol. 221, 404–418 (2000).
    Article CAS Google Scholar
  18. Potter, C. J., Huang, H. & Xu, T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105, 357–368 (2001).
    Article CAS Google Scholar
  19. Tapon, N., Ito, N., Dickson, B. J., Treisman, J. E. & Hariharan, I. K. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105, 345–355 (2001).
    Article CAS Google Scholar
  20. Gao, X. & Pan, D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 15, 1383–1392 (2001).
    Article CAS Google Scholar
  21. Moberg, K. H., Bell, D. W., Wahrer, D. C., Haber, D. A. & Hariharan, I. K. Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413, 311–316 (2001).
    Article CAS Google Scholar
  22. Goberdhan, D. C., Paricio, N., Goodman, E. C., Mlodzik, M. & Wilson, C. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev. 13, 3244–3258 (1999).
    Article CAS Google Scholar
  23. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).
    Article CAS Google Scholar
  24. Cantley, L. C. & Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA 96, 4240–4245 (1999).
    Article CAS Google Scholar
  25. Lehner, C. F. The beauty of small flies. Nature Cell Biol. 1, E129–E130 (1999).
    Article CAS Google Scholar
  26. Edgar, B. A. From small flies come big discoveries about size control. Nature Cell Biol. 1, E191–E193 (1999).
    Article CAS Google Scholar
  27. Weinkove, D. & Leevers, S. J. The genetic control of organ growth: insights from Drosophila. Curr. Opin. Genet. Dev. 10, 75–80 (2000).
    Article CAS Google Scholar
  28. Stocker, H. & Hafen, E. Genetic control of cell size. Curr. Opin. Genet. Dev. 10, 529–535 (2000).
    Article CAS Google Scholar
  29. Alessi, D. R. & Cohen, P. Mechanism of activation and function of protein kinase B. Curr. Opin. Genet. Dev. 8, 55–62 (1998).
    Article CAS Google Scholar
  30. Brazil, D. P. & Hemmings, B. A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci. 26, 657–664 (2001).
    Article CAS Google Scholar
  31. Scheid, M. P. & Woodgett, J. R. PKB/AKT: functional insights from genetic models. Nature Rev. Mol. Cell Biol. 2, 760–768 (2001).
    Article CAS Google Scholar
  32. Verdu, J., Buratovich, M. A., Wilder, E. L. & Birnbaum, M. J. Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nature Cell Biol. 1, 500–506 (1999).
    Article CAS Google Scholar
  33. Shioi, T. et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol. Cell. Biol. 22, 2799–2809 (2002).
    Article CAS Google Scholar
  34. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).
    Article CAS Google Scholar
  35. Aoki, M., Blazek, E. & Vogt, P. K. A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc. Natl Acad. Sci. USA 98, 136–141 (2001).
    Article CAS Google Scholar
  36. Alessi, D. R., Caudwell, F. B., Andjelkovic, M., Hemmings, B. A. & Cohen, P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett. 399, 333–338 (1996).
    Article CAS Google Scholar
  37. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).
    CAS Google Scholar
  38. Scanga, S. E. et al. The conserved PI3′K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila. Oncogene 19, 3971–3977 (2000).
    Article CAS Google Scholar
  39. Ito, K., Awano, W., Suzuki, K., Hiromi, Y. & Yamamoto, D. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761–771 (1997).
    CAS PubMed Google Scholar
  40. Struhl, G. & Basler, K. Organizing activity of wingless protein in Drosophila. Cell 72, 527–540 (1993).
    Article CAS Google Scholar
  41. Schmelzle, T. & Hall, M. N. TOR, a central controller of cell growth. Cell 103, 253–262 (2000).
    Article CAS Google Scholar
  42. Dufner, A. & Thomas, G. Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253, 100–109 (1999).
    Article CAS Google Scholar
  43. Bunch, T. A., Grinblat, Y. & Goldstein, L. S. Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16, 1043–1061 (1988).
    Article CAS Google Scholar
  44. Halder, G. et al. Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development. Development 125, 2181–2191 (1998).
    CAS PubMed Google Scholar
  45. Hay, B. A., Maile, R. & Rubin, G. M. P element insertion-dependent gene activation in the Drosophila eye. Proc. Natl Acad. Sci. USA 94, 5195–5200 (1997).
    Article CAS Google Scholar
  46. Zhang, H., Stallock, J. P., Ng, J. C., Reinhard, C. & Neufeld, T. P. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 14, 2712–2724 (2000).
    Article CAS Google Scholar
  47. Fehon, R. G. et al. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61, 523–534 (1990).
    Article CAS Google Scholar

Download references