Fas engagement induces neurite growth through ERK activation and p35 upregulation (original) (raw)
References
Yonehara, S., Ishii, A. & Yonehara, M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med.169, 1747–1756 (1989). ArticleCAS Google Scholar
Trauth, B.C. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science245, 301–305 (1989). ArticleCAS Google Scholar
Shinohara, H., Yagita, H., Ikawa, Y. & Oyaizu, N. Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase. Cancer Res.60, 1766–1772 (2000). CASPubMed Google Scholar
Gomez, C. et al. Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells. J. Neurosci. Res.63, 421–428 (2001). ArticleCAS Google Scholar
Becher, B., D'Souza, S.D., Troutt, A.B. & Antel, J.P. Fas expression on human fetal astrocytes without susceptibility to Fas-mediated cytotoxicity. Neurosciences84, 627–634 (1998). ArticleCAS Google Scholar
Raoul, C., Henderson, C.E. & Pettmann, B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol.147, 1049–1062 (1999). ArticleCAS Google Scholar
Raoul, C. et al. Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS-linked SOD1 mutations. Neuron35, 1067–1083 (2002). ArticleCAS Google Scholar
Matsushita, K. et al. Fas receptor and neuronal cell death after spinal cord ischemia. J. Neurosci.20, 6879–6887 (2000). ArticleCAS Google Scholar
Cheema, Z.F. et al. Fas/Apo (apoptosis)-1 and associated proteins in the differentiating cerebral cortex: induction of caspase-dependent cell death and activation of NF-κB. J. Neurosci.19, 1754–1770 (1999). ArticleCAS Google Scholar
Alderson, M.R. et al. Fas transduces activation signals in normal human T lymphocytes. J. Exp. Med.178, 2231–2235 (1993). ArticleCAS Google Scholar
Owen-Schaub, L.B., Meterissian, S. & Ford, R.J. Fas/APO-1 expression and function on malignant cells of hematologic and non-hematologic origin. J. Immunother.14, 234–241 (1993). ArticleCAS Google Scholar
Alderson, M.R. et al. Regulation of apoptosis and T cell activation by Fas-specific mAb. Int. Immunol.6, 1799–1806 (1994). ArticleCAS Google Scholar
Freiberg, R.A. et al. Fas signal transduction triggers either proliferation or apoptosis in human fibroblasts. J. Invest. Dermatol.108, 215–219 (1997). ArticleCAS Google Scholar
Desbarats, J., Wade, T., Wade, W.F. & Newell, M.K. Dichotomy between naïve and memory CD4+ T cell responses to Fas (CD95) engagement. Proc. Natl Acad. Sci. USA96, 8104–8109 (1999). ArticleCAS Google Scholar
Desbarats, J. & Newell, M.K. Fas engagement accelerates liver regeneration after partial hepatectomy. Nature Med.6, 920–923 (2000). ArticleCAS Google Scholar
Tsutsui, H. et al. Caspase-1-independent, Fas/Fas ligand-mediated IL-18 secretion from macrophages causes acute liver injury in mice. Immunity11, 359–367 (1999). ArticleCAS Google Scholar
Medema, J.P. et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J.16, 2794–2804 (1997). ArticleCAS Google Scholar
Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature388, 190–195 (1997). ArticleCAS Google Scholar
Fukunaga, K. & Miyamoto, E. Role of MAP kinase in neurons. Mol. Neurobiol.16, 79–95 (1998). ArticleCAS Google Scholar
Holmstrom, T. et al. MAPK/ERK signaling in activated T cells inhibits CD95/Fas-mediated apoptosis downstream of DISC assembly. EMBO J.19, 5418–5428 (2000). ArticleCAS Google Scholar
Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NF-κB and ERK signaling pathways. Curr. Biol.10, 640–648 (2000). ArticleCAS Google Scholar
Kury, P., Stoll, G. & Muller, H.W. Molecular mechanisms of cellular interactions in peripheral nerve regeneration. Curr. Opin. Neurobiol.14, 635–639 (2001). ArticleCAS Google Scholar
Levi-Montalcini, R., Meyer, H. & Hamburger, V. In vitro experiments on the effects of mouse sarcoma 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res.14, 49–57 (1954). CASPubMed Google Scholar
Lonze, B.E., Riccio, A., Cohen, S. & Ginty, D.D. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron34, 371–385 (2002). ArticleCAS Google Scholar
Chen, M.S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature403, 434–439 (2000). ArticleCAS Google Scholar
Ledda, F., Paratcha, G. & Ibanez, C.F. Target-derived GFRα1 as an attractive guidance signal for developing sensory and sympathetic axons via activation of Cdk5. Neuron36, 387–401 (2002). ArticleCAS Google Scholar
Levi-Montalcini, R. & Angeletti, P.U. Essential role of the nerve growth factor in survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro. Dev. Biol.7, 653–659 (1963). Article Google Scholar
Qian, X., Riccio, A., Zhang, Y. & Ginty, D.D. Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron21, 1017–1029 (1998). ArticleCAS Google Scholar
Cowley, S., Paterson, H., Kemp, P. & Marshall, C.J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell77, 841–852 (1994). ArticleCAS Google Scholar
Pang, L., Sawada, T., Decker, S.J. & Saltiel, A.R. Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J. Biol. Chem.270, 13585–13588 (1995). ArticleCAS Google Scholar
Harada, T., Morooka, T., Ogawa, S. & Nishida, E. ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nature Cell Biol.3, 453–459 (2001). ArticleCAS Google Scholar
Nikolic, M., Dudek, H., Kwon, Y.T., Ramos, Y.F. & Tsai, L.S. The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev.10, 816–825 (1996). ArticleCAS Google Scholar
Biedler, J.L., Roffler-Tarlov, S., Schachner, M. & Freedman, L.S. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res.38, 3751–3757 (1978). CASPubMed Google Scholar
Ju, S.T. et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature373, 345–348 (1995). Article Google Scholar
Kimura, M. & Matsuzawa, A. Autoimmunity in mice bearing lpr.cg: a novel mutant gene. Int. Rev. Immunol.11, 193–210 (1994). ArticleCAS Google Scholar
Chinnaiyan, A.M., O'Rourke, K., Tewari, M. & Dixit, V.M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell81, 505–512 (1995). ArticleCAS Google Scholar
Eberstadt, M., Huang, B., Olejniczak, E.T. & Fesik, S.W. The lymphoproliferation mutation in Fas locally unfolds the Fas death domain. Nature Struct. Biol.4, 983–985 (1997). ArticleCAS Google Scholar
Adachi, M., Watanabe-Fukunaga, R. & Nagata, S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc. Natl Acad. Sci. USA90, 1756–1760 (1993). ArticleCAS Google Scholar
De Medinaceli, L., Freed, W.J. & Wyatt, R.J. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp. Neurol.77, 634–643 (1982). ArticleCAS Google Scholar
Sakic, B. et al. Progressive atrophy of pyramidal neuron dendrites in autoimmune MRL-lpr mice. J. Neuroimmunol.87, 162–170 (1998). ArticleCAS Google Scholar
Martin-Villalba, A. et al. CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J. Neurosci.19, 3809–3817 (1999). ArticleCAS Google Scholar
Newell, M.K. et al. Does the oxidative/glycolytic ratio determine proliferation or death in immune recognition? Ann. NY Acad. Sci.887, 77–82 (1999). ArticleCAS Google Scholar
Wohlleben, G. et al. Regulation of Fas and FasL expression on rat Schwann cells. Glia30, 373–381 (2000). ArticleCAS Google Scholar
Schwartz, M., Moalem, G., Leibowitz-Amit, R. & Cohen, I.R. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci.22, 295–299 (1999). ArticleCAS Google Scholar
Biancone, L. et al. Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J. Exp. Med.186, 147–152 (1997). ArticleCAS Google Scholar
Tran, S.E., Holmstrom, T.H., Ahonen, M., Kahari, V.M. & Eriksson, J.E. MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J. Biol. Chem.276, 16484–16490 (2001). ArticleCAS Google Scholar
Wilson, D., Alessandrini, A. & Budd, R. MEK1 activation rescues Jurkat T cells from Fas-induced apoptosis. Cell. Immunol.194, 67–77 (1999). ArticleCAS Google Scholar
Wosik, K., Becher, B., Ezman, A., Nalbantoglu, J. & Antel, J.P. Caspase 8 expression and signaling in Fas injury-resistant human fetal astrocytes. Glia33, 217–224 (2001). ArticleCAS Google Scholar
Desbarats, J., Duke, R.C. & Newell, M.K. Newly discovered role for Fas ligand in the cell-cycle arrest of CD4+ T cells. Nature Med.4, 1377–1381 (1998). ArticleCAS Google Scholar