Fas engagement induces neurite growth through ERK activation and p35 upregulation (original) (raw)

References

  1. Yonehara, S., Ishii, A. & Yonehara, M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169, 1747–1756 (1989).
    Article CAS Google Scholar
  2. Trauth, B.C. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301–305 (1989).
    Article CAS Google Scholar
  3. Shinohara, H., Yagita, H., Ikawa, Y. & Oyaizu, N. Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase. Cancer Res. 60, 1766–1772 (2000).
    CAS PubMed Google Scholar
  4. Gomez, C. et al. Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells. J. Neurosci. Res. 63, 421–428 (2001).
    Article CAS Google Scholar
  5. Becher, B., D'Souza, S.D., Troutt, A.B. & Antel, J.P. Fas expression on human fetal astrocytes without susceptibility to Fas-mediated cytotoxicity. Neurosciences 84, 627–634 (1998).
    Article CAS Google Scholar
  6. Raoul, C., Henderson, C.E. & Pettmann, B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol. 147, 1049–1062 (1999).
    Article CAS Google Scholar
  7. Raoul, C. et al. Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS-linked SOD1 mutations. Neuron 35, 1067–1083 (2002).
    Article CAS Google Scholar
  8. Matsushita, K. et al. Fas receptor and neuronal cell death after spinal cord ischemia. J. Neurosci. 20, 6879–6887 (2000).
    Article CAS Google Scholar
  9. Cheema, Z.F. et al. Fas/Apo (apoptosis)-1 and associated proteins in the differentiating cerebral cortex: induction of caspase-dependent cell death and activation of NF-κB. J. Neurosci. 19, 1754–1770 (1999).
    Article CAS Google Scholar
  10. Alderson, M.R. et al. Fas transduces activation signals in normal human T lymphocytes. J. Exp. Med. 178, 2231–2235 (1993).
    Article CAS Google Scholar
  11. Owen-Schaub, L.B., Meterissian, S. & Ford, R.J. Fas/APO-1 expression and function on malignant cells of hematologic and non-hematologic origin. J. Immunother. 14, 234–241 (1993).
    Article CAS Google Scholar
  12. Alderson, M.R. et al. Regulation of apoptosis and T cell activation by Fas-specific mAb. Int. Immunol. 6, 1799–1806 (1994).
    Article CAS Google Scholar
  13. Freiberg, R.A. et al. Fas signal transduction triggers either proliferation or apoptosis in human fibroblasts. J. Invest. Dermatol. 108, 215–219 (1997).
    Article CAS Google Scholar
  14. Desbarats, J., Wade, T., Wade, W.F. & Newell, M.K. Dichotomy between naïve and memory CD4+ T cell responses to Fas (CD95) engagement. Proc. Natl Acad. Sci. USA 96, 8104–8109 (1999).
    Article CAS Google Scholar
  15. Desbarats, J. & Newell, M.K. Fas engagement accelerates liver regeneration after partial hepatectomy. Nature Med. 6, 920–923 (2000).
    Article CAS Google Scholar
  16. Tsutsui, H. et al. Caspase-1-independent, Fas/Fas ligand-mediated IL-18 secretion from macrophages causes acute liver injury in mice. Immunity 11, 359–367 (1999).
    Article CAS Google Scholar
  17. Nagata, S. Apoptosis by death factor. Cell 88, 355–365 (1997).
    Article CAS Google Scholar
  18. Medema, J.P. et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16, 2794–2804 (1997).
    Article CAS Google Scholar
  19. Irmler, M. et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 (1997).
    Article CAS Google Scholar
  20. Fukunaga, K. & Miyamoto, E. Role of MAP kinase in neurons. Mol. Neurobiol. 16, 79–95 (1998).
    Article CAS Google Scholar
  21. Holmstrom, T. et al. MAPK/ERK signaling in activated T cells inhibits CD95/Fas-mediated apoptosis downstream of DISC assembly. EMBO J. 19, 5418–5428 (2000).
    Article CAS Google Scholar
  22. Kataoka, T. et al. The caspase-8 inhibitor FLIP promotes activation of NF-κB and ERK signaling pathways. Curr. Biol. 10, 640–648 (2000).
    Article CAS Google Scholar
  23. Kury, P., Stoll, G. & Muller, H.W. Molecular mechanisms of cellular interactions in peripheral nerve regeneration. Curr. Opin. Neurobiol. 14, 635–639 (2001).
    Article CAS Google Scholar
  24. Levi-Montalcini, R., Meyer, H. & Hamburger, V. In vitro experiments on the effects of mouse sarcoma 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res. 14, 49–57 (1954).
    CAS PubMed Google Scholar
  25. Lonze, B.E., Riccio, A., Cohen, S. & Ginty, D.D. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34, 371–385 (2002).
    Article CAS Google Scholar
  26. Chen, M.S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).
    Article CAS Google Scholar
  27. Ledda, F., Paratcha, G. & Ibanez, C.F. Target-derived GFRα1 as an attractive guidance signal for developing sensory and sympathetic axons via activation of Cdk5. Neuron 36, 387–401 (2002).
    Article CAS Google Scholar
  28. Levi-Montalcini, R. & Angeletti, P.U. Essential role of the nerve growth factor in survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro. Dev. Biol. 7, 653–659 (1963).
    Article Google Scholar
  29. Qian, X., Riccio, A., Zhang, Y. & Ginty, D.D. Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 21, 1017–1029 (1998).
    Article CAS Google Scholar
  30. Cowley, S., Paterson, H., Kemp, P. & Marshall, C.J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841–852 (1994).
    Article CAS Google Scholar
  31. Pang, L., Sawada, T., Decker, S.J. & Saltiel, A.R. Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J. Biol. Chem. 270, 13585–13588 (1995).
    Article CAS Google Scholar
  32. Harada, T., Morooka, T., Ogawa, S. & Nishida, E. ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nature Cell Biol. 3, 453–459 (2001).
    Article CAS Google Scholar
  33. Nikolic, M., Dudek, H., Kwon, Y.T., Ramos, Y.F. & Tsai, L.S. The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 10, 816–825 (1996).
    Article CAS Google Scholar
  34. Biedler, J.L., Roffler-Tarlov, S., Schachner, M. & Freedman, L.S. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 38, 3751–3757 (1978).
    CAS PubMed Google Scholar
  35. Ju, S.T. et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 345–348 (1995).
    Article Google Scholar
  36. Kimura, M. & Matsuzawa, A. Autoimmunity in mice bearing lpr.cg: a novel mutant gene. Int. Rev. Immunol. 11, 193–210 (1994).
    Article CAS Google Scholar
  37. Chinnaiyan, A.M., O'Rourke, K., Tewari, M. & Dixit, V.M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512 (1995).
    Article CAS Google Scholar
  38. Eberstadt, M., Huang, B., Olejniczak, E.T. & Fesik, S.W. The lymphoproliferation mutation in Fas locally unfolds the Fas death domain. Nature Struct. Biol. 4, 983–985 (1997).
    Article CAS Google Scholar
  39. Adachi, M., Watanabe-Fukunaga, R. & Nagata, S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc. Natl Acad. Sci. USA 90, 1756–1760 (1993).
    Article CAS Google Scholar
  40. De Medinaceli, L., Freed, W.J. & Wyatt, R.J. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp. Neurol. 77, 634–643 (1982).
    Article CAS Google Scholar
  41. Sakic, B. et al. Progressive atrophy of pyramidal neuron dendrites in autoimmune MRL-lpr mice. J. Neuroimmunol. 87, 162–170 (1998).
    Article CAS Google Scholar
  42. Martin-Villalba, A. et al. CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J. Neurosci. 19, 3809–3817 (1999).
    Article CAS Google Scholar
  43. Newell, M.K. et al. Does the oxidative/glycolytic ratio determine proliferation or death in immune recognition? Ann. NY Acad. Sci. 887, 77–82 (1999).
    Article CAS Google Scholar
  44. Wohlleben, G. et al. Regulation of Fas and FasL expression on rat Schwann cells. Glia 30, 373–381 (2000).
    Article CAS Google Scholar
  45. Schwartz, M., Moalem, G., Leibowitz-Amit, R. & Cohen, I.R. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci. 22, 295–299 (1999).
    Article CAS Google Scholar
  46. Biancone, L. et al. Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J. Exp. Med. 186, 147–152 (1997).
    Article CAS Google Scholar
  47. Tran, S.E., Holmstrom, T.H., Ahonen, M., Kahari, V.M. & Eriksson, J.E. MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J. Biol. Chem. 276, 16484–16490 (2001).
    Article CAS Google Scholar
  48. Wilson, D., Alessandrini, A. & Budd, R. MEK1 activation rescues Jurkat T cells from Fas-induced apoptosis. Cell. Immunol. 194, 67–77 (1999).
    Article CAS Google Scholar
  49. Wosik, K., Becher, B., Ezman, A., Nalbantoglu, J. & Antel, J.P. Caspase 8 expression and signaling in Fas injury-resistant human fetal astrocytes. Glia 33, 217–224 (2001).
    Article CAS Google Scholar
  50. Desbarats, J., Duke, R.C. & Newell, M.K. Newly discovered role for Fas ligand in the cell-cycle arrest of CD4+ T cells. Nature Med. 4, 1377–1381 (1998).
    Article CAS Google Scholar

Download references