Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage (original) (raw)

References

  1. Rouse, J. & Jackson, S.P. Interface between the detection, signaling, and repair of DNA damage. Science 297, 547–551 (2002).
    Article CAS PubMed Google Scholar
  2. Bartek, J., Falck, J. & Lukas, J. CHK2 kinase — a busy messenger. Nature Rev. Mol. Cell Biol. 2, 877–886 (2001).
    Article CAS Google Scholar
  3. Limoli, C.L. & Ward, J.F. A new method for introducing double-strand breaks into cellular DNA. Radiat. Res. 13, 160–169 (1993).
    Article Google Scholar
  4. Rogakou, E.P., Boon, C., Redon, C. & Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  5. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 (2000).
    CAS PubMed PubMed Central Google Scholar
  6. Falck, J., Petrini, J.H., Williams, B.R., Lukas, J. & Bartek, J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nature Genet. 30, 290–294 (2002).
    Article PubMed Google Scholar
  7. Falck, J., Mailand, N., Syljuasen, R.G., Bartek, J. & Lukas, J. The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistent DNA synthesis. Nature 410, 842–847 (2001).
    Article CAS PubMed Google Scholar
  8. Ward, I.M., Wu, X. & Chen, J. Threonine 68 of Chk2 is phosphorylated at sites of DNA strand breaks. J. Biol. Chem. 276, 2971–2974 (2001).
    Article Google Scholar
  9. Wang, B., Matsuoka, S., Carpenter, P.B. & Elledge, S.J. 53BP1, a mediator of the DNA damage checkpoint. Science 298, 1435–1438 (2002).
    Article CAS PubMed Google Scholar
  10. Lee, C.H. & Chung, J.H. The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation. J. Biol. Chem. 276, 30537–30541 (2001).
    Article CAS PubMed Google Scholar
  11. Wu, X., Webster, S.R. & Chen, J. Characterization of tumor-associated Chk2 mutations. J. Biol. Chem. 276, 47755–47758 (2001).
    Article PubMed Google Scholar
  12. Kim, S.T., Xu, B. & Kastan, M.B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16, 560–570 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  13. Yazdi, P.T. et al. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16, 571–582 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  14. D'Amours, D. & Jackson, S.P. The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nature Rev. Mol. Cell Biol. 3, 317–327 (2002).
    Article CAS Google Scholar
  15. Petrini, J.H. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol. 12, 293–296 (2000).
    Article CAS PubMed Google Scholar
  16. Melo, J.A., Cohen, J. & Toczyski, D.P. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15, 2809–2821 (2001).
    CAS PubMed PubMed Central Google Scholar
  17. Kanda, T., Sullivan, K.F. & Wahl, G.M. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).
    Article CAS PubMed Google Scholar
  18. Falck, J. et al. Functional impact of concomitant versus alternative defects in the Chk2–p53 tumour suppressor pathway. Oncogene 20, 5503–5510 (2001).
    Article CAS PubMed Google Scholar
  19. Chehab, N.H., Malikzay, A., Appel, M. & Halazonetis, T.D. Chk2/Cds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev. 14, 278–288 (2000).
    CAS PubMed PubMed Central Google Scholar
  20. Hirao, A. et al. Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol. Cell. Biol. 22, 6521–6532 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  21. Takai, H. et al. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J. 21, 5195–5205 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  22. Ahn, J.Y., Li, X., Davis, H.L. & Canman C.E. Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of the Chk2 protein kinase via the forkhead-associated domain. J. Biol. Chem. 277, 19389–19395 (2002).
    Article CAS PubMed Google Scholar
  23. Xu, X., Tsvetkov, L.M. & Stern, D.F. Chk2 activation and phosphorylation-dependent oligomerization. Mol. Cell. Biol. 22, 4419–4432 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  24. Desai-Mehta, A., Cerosaletti, K.M. & Concannon, P. Distinct functional domains of Nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol. Cell. Biol. 21, 2184–2191 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  25. Tauchi, H. et al. The forkhead-associated domain of Nbs1 is essential for nuclear foci formation after irradiation but not hRad50–hMre11–Nbs1 complex DNA repair activity. J. Biol. Chem. 276, 12–15 (2001).
    Article CAS PubMed Google Scholar
  26. Li, J. et al. Structural and functional versatility of the FHA domain in DNA-damage signalling by the tumor suppressor kinase Chk2. Mol. Cell 9, 1045–1054 (2002).
    Article CAS PubMed Google Scholar
  27. Essers, J. et al. Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. EMBO J. 21, 2030–2037 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  28. Norris, P.S. & Haas, M. A fluorescent p53GFP fusion protein facilitates its detection in mammalian cells while retaining the properties of wild-type p53. Oncogene 15, 2241–2247 (1997).
    Article CAS PubMed Google Scholar
  29. Stommel, J.M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  30. Lukas, C. et al. DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res. 61, 4990–4993 (2001).
    CAS PubMed Google Scholar

Download references