Molecular tweezers modulate 14-3-3 protein–protein interactions (original) (raw)

References

  1. Gale, P. A. (ed.) Supramolecular chemistry anniversary. Chem. Soc. Rev. 36, 141–142 (2007).
    Google Scholar
  2. Gale, P. A. & Steed, J. W. (eds) Supramolecular Chemistry: From Molecules to Nanomaterials (Wiley, 2012).
    Google Scholar
  3. Schrader, T. & Koch, S. Artificial protein sensors. Mol. BioSyst. 3, 241–248 (2007).
    CAS PubMed Google Scholar
  4. Peczuh, M. W. & Hamilton, A. D. Peptide and protein recognition by designed molecules. Chem. Rev. 100, 2479–2494 (2000).
    CAS PubMed Google Scholar
  5. Yin, H. & Hamilton, A. D. Strategies for targeting protein–protein interactions with synthetic agents. Angew. Chem. Int. Ed. 44, 4130–4163 (2005).
    CAS Google Scholar
  6. Martos, V., Castreño, P., Valero, J. & de Mendoza, J. Binding to protein surfaces by supramolecular multivalent scaffolds. Curr. Opin. Chem. Biol. 12, 698–706 (2008).
    CAS PubMed Google Scholar
  7. Gradl, S. N., Felix, J. P., Isacoff, E. Y., Garcia, M. L. & Trauner, D. Protein surface recognition by rational design: nanomolar ligands for potassium channels. J. Am. Chem. Soc. 125, 12668–12669 (2003).
    CAS PubMed PubMed Central Google Scholar
  8. Martos, V., Bell, S. C., Santos, E., Isacoff, E. Y., Trauner, D. & de Mendoza, J. Calix[4]arene-based conical-shaped ligands for voltage-dependent potassium channels. Proc. Natl Acad. Sci. USA 106, 10482–10486 (2009).
    CAS PubMed PubMed Central Google Scholar
  9. Gordo, S. et al. Stability and structural recovery of the tetramerization domain of p53–R337H mutant induced by a designed templating ligand. Proc. Natl Acad. Sci. USA 105, 16426–16431 (2008).
    CAS PubMed PubMed Central Google Scholar
  10. Nguyen, H. D., Dang, D. T., van Dongen, J. L. J. & Brunsveld, L. Supramolecular induced protein dimerization with cucurbit[8]uril. Angew. Chem. Int. Ed. 49, 895–898 (2010).
    CAS Google Scholar
  11. Ader, C. et al. A structural link between inactivation and block of a K+ channel. Nature Struct. Mol. Biol. 15, 605–612 (2008).
    CAS Google Scholar
  12. Chinai, J. M. et al. Molecular recognition of insulin by a synthetic receptor. J. Am. Chem. Soc. 133, 8810–8813 (2011).
    CAS PubMed PubMed Central Google Scholar
  13. McGovern, R. E., Fernandes, H., Khan, A. R., Powera, N. P. & Crowley, P. B. Protein camouflage in cytochrome _c_–calixarene complexes. Nature Chem. 4, 527–533 (2012).
    CAS Google Scholar
  14. Fokkens, M., Schrader, T. & Klärner, F-G. A molecular tweezer for lysine and arginine. J. Am. Chem. Soc. 127, 14415–14421 (2005).
    CAS PubMed Google Scholar
  15. Talbiersky, P., Bastkowski, F., Klärner, F-G. & Schrader, T. Molecular clip and tweezer introduce new mechanisms of enzyme inhibition. J. Am. Chem. Soc. 130, 9824–9828 (2008).
    CAS PubMed Google Scholar
  16. Klärner, F-G. et al. Molecular tweezer and clip in aqueous solution: unexpected self-assembly, powerful host–guest complex formation and quantum chemical 1H NMR shift calculation. J. Am. Chem. Soc. 128, 4831–4841 (2006).
    Article PubMed Google Scholar
  17. Klärner, F-G. et al. The effect of molecular clips and tweezers on enzymatic reactions by binding coenzymes and basic amino acids. Pure Appl. Chem. 82, 991–999 (2010).
    Google Scholar
  18. Wells, J. A. & McClendon, C. L. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450, 1001–1009 (2007).
    CAS PubMed Google Scholar
  19. Morrison, D. K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 19, 16–23 (2009).
    CAS PubMed Google Scholar
  20. Fantl, W. J. et al. Activation of Raf-1 by 14-3-3 proteins. Nature 371, 612–614 (1994).
    CAS PubMed Google Scholar
  21. Molzan, M. et al. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Mol. Cell Biol. 19, 4698–4711 (2010).
    Google Scholar
  22. Vassilev, A., Kaneko, K. J., Shu, H., Zhao, Y. & DePamphilis, M. L. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 15, 1229–1241 (2001).
    CAS PubMed PubMed Central Google Scholar
  23. Schumacher, B., Skwarczynska, M., Rose, R. & Ottmann, C. Structure of a 14-3-3σ-YAP phosphopeptide complex at 1.15 Å resolution. Acta Crystallogr. F 66, 978–984 (2010).
    CAS Google Scholar
  24. Rajagopalan, S., Sade, R. S., Townsley, F. M. & Fersht, A. R. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res. 38, 893–906 (2010).
    CAS PubMed Google Scholar
  25. Schumacher, B., Mondry, J., Thiel, P., Weyand, M. & Ottmann, C. Structure of the p53 C-terminus bound to 14-3-3: implications for stabilization of the p53 tetramer. FEBS Lett. 584, 1443–1448 (2010).
    CAS PubMed Google Scholar
  26. Fu, H., Coburn, J. & Collier, R. J. The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc. Natl Acad. Sci. USA 90, 2320–2324 (1993).
    CAS PubMed PubMed Central Google Scholar
  27. Ottmann, C. et al. Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis. EMBO J. 26, 902–913 (2007).
    CAS PubMed PubMed Central Google Scholar
  28. Hermeking, H. The 14-3-3 cancer connection. Nature Rev. Cancer 3, 931–943 (2003).
    CAS Google Scholar
  29. Berg, D., Holzmann, C. & Riess, O. 14-3-3 proteins in the nervous system. Nature Rev. Neurosci. 9, 752–762 (2003).
    Google Scholar
  30. Morrison, D. K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 19, 16–23 (2009).
    CAS PubMed Google Scholar
  31. Andrews, R. K., Du, X. & Berndt, M. C. The 14-3-3zeta-GPIb-IX-V complex as an antiplatelet target. Drug News Perspect. 20, 285–292 (2007).
    CAS PubMed Google Scholar
  32. Wu, H., Ge, J. & Yao, S. Q. Microarray-assisted high-throughput identification of a cell-permeable small-molecule binder of 14-3-3 proteins. Angew. Chem. Int. Ed. 49, 6528–6532 (2010).
    CAS Google Scholar
  33. Corradi, V. et al. Identification of the first non-peptidic small molecule inhibitor of the c-Abl/14-3-3 protein–protein interactions able to drive sensitive and Imatinib-resistant leukemia cells to apoptosis. Bioorg. Med. Chem. Lett. 20, 6133–6137 (2010).
    CAS PubMed Google Scholar
  34. Rose, R. et al. Identification and structure of small-molecule stabilizers of 14-3-3 protein–protein interactions. Angew. Chem. Int. Ed. 49, 4129–4132 (2010).
    CAS Google Scholar
  35. Zhao, J. et al. Discovery and structural characterization of a small molecule 14-3-3 protein–protein interaction inhibitor. Proc. Natl Acad. Sci. USA 108, 16212–16216 (2011).
    CAS PubMed PubMed Central Google Scholar
  36. Richter, A., Rose, R., Hedberg, C., Waldmann, H. & Ottmann, C. An optimised small-molecule stabiliser of the 14-3-3–PMA2 protein–protein interaction. Chem. Eur. J. 21, 6520–6527 (2012).
    Google Scholar
  37. Wang, B. et al. Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry 38, 12499–12504 (1999).
    CAS PubMed Google Scholar
  38. Wu, H., Ge, J. & Yao, S. Q. Microarray-assisted high-throughput identification of a cell-permeable small-molecule binder of 14-3-3 proteins. Angew. Chem. Int. Ed. 49, 6528–6532 (2010).
    CAS Google Scholar
  39. Corradi, V. et al. Identification of the first non-peptidic small molecule inhibitor of the c-Abl/14-3-3 protein–protein interactions able to drive sensitive and imatinib-resistant leukemia cells to apoptosis. Bioorg. Med. Chem. Lett. 20, 6133–6137 (2010).
    CAS PubMed Google Scholar
  40. Brooks, B. R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).
    CAS Google Scholar
  41. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 14, 33–38 (1996).
    CAS Google Scholar
  42. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).
    CAS PubMed PubMed Central Google Scholar
  43. Sherwood, P. et al. QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. J. Mol. Struct. (Teochem) 632, 1–28 (2003).
    CAS Google Scholar
  44. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
    CAS PubMed Google Scholar
  45. Becke, A. D. Density functional thermochemistry. II. The effect of the Perdew–Wang generalized gradient correlation correction. J. Chem. Phys. 97, 9173–9177 (1992).
    CAS Google Scholar
  46. Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992).
    Google Scholar
  47. Mackerell, A. D., Feig, M. Jr & Brooks, C. L. III . Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004).
    CAS PubMed Google Scholar

Download references