Gale, P. A. (ed.) Supramolecular chemistry anniversary. Chem. Soc. Rev.36, 141–142 (2007). Google Scholar
Gale, P. A. & Steed, J. W. (eds) Supramolecular Chemistry: From Molecules to Nanomaterials (Wiley, 2012). Google Scholar
Schrader, T. & Koch, S. Artificial protein sensors. Mol. BioSyst.3, 241–248 (2007). CASPubMed Google Scholar
Peczuh, M. W. & Hamilton, A. D. Peptide and protein recognition by designed molecules. Chem. Rev.100, 2479–2494 (2000). CASPubMed Google Scholar
Yin, H. & Hamilton, A. D. Strategies for targeting protein–protein interactions with synthetic agents. Angew. Chem. Int. Ed.44, 4130–4163 (2005). CAS Google Scholar
Martos, V., Castreño, P., Valero, J. & de Mendoza, J. Binding to protein surfaces by supramolecular multivalent scaffolds. Curr. Opin. Chem. Biol.12, 698–706 (2008). CASPubMed Google Scholar
Gradl, S. N., Felix, J. P., Isacoff, E. Y., Garcia, M. L. & Trauner, D. Protein surface recognition by rational design: nanomolar ligands for potassium channels. J. Am. Chem. Soc.125, 12668–12669 (2003). CASPubMedPubMed Central Google Scholar
Martos, V., Bell, S. C., Santos, E., Isacoff, E. Y., Trauner, D. & de Mendoza, J. Calix[4]arene-based conical-shaped ligands for voltage-dependent potassium channels. Proc. Natl Acad. Sci. USA106, 10482–10486 (2009). CASPubMedPubMed Central Google Scholar
Gordo, S. et al. Stability and structural recovery of the tetramerization domain of p53–R337H mutant induced by a designed templating ligand. Proc. Natl Acad. Sci. USA105, 16426–16431 (2008). CASPubMedPubMed Central Google Scholar
Nguyen, H. D., Dang, D. T., van Dongen, J. L. J. & Brunsveld, L. Supramolecular induced protein dimerization with cucurbit[8]uril. Angew. Chem. Int. Ed.49, 895–898 (2010). CAS Google Scholar
Ader, C. et al. A structural link between inactivation and block of a K+ channel. Nature Struct. Mol. Biol.15, 605–612 (2008). CAS Google Scholar
Chinai, J. M. et al. Molecular recognition of insulin by a synthetic receptor. J. Am. Chem. Soc.133, 8810–8813 (2011). CASPubMedPubMed Central Google Scholar
McGovern, R. E., Fernandes, H., Khan, A. R., Powera, N. P. & Crowley, P. B. Protein camouflage in cytochrome _c_–calixarene complexes. Nature Chem.4, 527–533 (2012). CAS Google Scholar
Fokkens, M., Schrader, T. & Klärner, F-G. A molecular tweezer for lysine and arginine. J. Am. Chem. Soc. 127, 14415–14421 (2005). CASPubMed Google Scholar
Talbiersky, P., Bastkowski, F., Klärner, F-G. & Schrader, T. Molecular clip and tweezer introduce new mechanisms of enzyme inhibition. J. Am. Chem. Soc.130, 9824–9828 (2008). CASPubMed Google Scholar
Klärner, F-G. et al. Molecular tweezer and clip in aqueous solution: unexpected self-assembly, powerful host–guest complex formation and quantum chemical 1H NMR shift calculation. J. Am. Chem. Soc.128, 4831–4841 (2006). ArticlePubMed Google Scholar
Klärner, F-G. et al. The effect of molecular clips and tweezers on enzymatic reactions by binding coenzymes and basic amino acids. Pure Appl. Chem.82, 991–999 (2010). Google Scholar
Wells, J. A. & McClendon, C. L. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature450, 1001–1009 (2007). CASPubMed Google Scholar
Morrison, D. K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol.19, 16–23 (2009). CASPubMed Google Scholar
Fantl, W. J. et al. Activation of Raf-1 by 14-3-3 proteins. Nature371, 612–614 (1994). CASPubMed Google Scholar
Molzan, M. et al. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Mol. Cell Biol.19, 4698–4711 (2010). Google Scholar
Vassilev, A., Kaneko, K. J., Shu, H., Zhao, Y. & DePamphilis, M. L. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev.15, 1229–1241 (2001). CASPubMedPubMed Central Google Scholar
Schumacher, B., Skwarczynska, M., Rose, R. & Ottmann, C. Structure of a 14-3-3σ-YAP phosphopeptide complex at 1.15 Å resolution. Acta Crystallogr. F66, 978–984 (2010). CAS Google Scholar
Rajagopalan, S., Sade, R. S., Townsley, F. M. & Fersht, A. R. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res.38, 893–906 (2010). CASPubMed Google Scholar
Schumacher, B., Mondry, J., Thiel, P., Weyand, M. & Ottmann, C. Structure of the p53 C-terminus bound to 14-3-3: implications for stabilization of the p53 tetramer. FEBS Lett.584, 1443–1448 (2010). CASPubMed Google Scholar
Fu, H., Coburn, J. & Collier, R. J. The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc. Natl Acad. Sci. USA90, 2320–2324 (1993). CASPubMedPubMed Central Google Scholar
Ottmann, C. et al. Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis. EMBO J.26, 902–913 (2007). CASPubMedPubMed Central Google Scholar
Hermeking, H. The 14-3-3 cancer connection. Nature Rev. Cancer3, 931–943 (2003). CAS Google Scholar
Berg, D., Holzmann, C. & Riess, O. 14-3-3 proteins in the nervous system. Nature Rev. Neurosci.9, 752–762 (2003). Google Scholar
Morrison, D. K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol.19, 16–23 (2009). CASPubMed Google Scholar
Andrews, R. K., Du, X. & Berndt, M. C. The 14-3-3zeta-GPIb-IX-V complex as an antiplatelet target. Drug News Perspect.20, 285–292 (2007). CASPubMed Google Scholar
Wu, H., Ge, J. & Yao, S. Q. Microarray-assisted high-throughput identification of a cell-permeable small-molecule binder of 14-3-3 proteins. Angew. Chem. Int. Ed.49, 6528–6532 (2010). CAS Google Scholar
Corradi, V. et al. Identification of the first non-peptidic small molecule inhibitor of the c-Abl/14-3-3 protein–protein interactions able to drive sensitive and Imatinib-resistant leukemia cells to apoptosis. Bioorg. Med. Chem. Lett.20, 6133–6137 (2010). CASPubMed Google Scholar
Rose, R. et al. Identification and structure of small-molecule stabilizers of 14-3-3 protein–protein interactions. Angew. Chem. Int. Ed.49, 4129–4132 (2010). CAS Google Scholar
Zhao, J. et al. Discovery and structural characterization of a small molecule 14-3-3 protein–protein interaction inhibitor. Proc. Natl Acad. Sci. USA108, 16212–16216 (2011). CASPubMedPubMed Central Google Scholar
Richter, A., Rose, R., Hedberg, C., Waldmann, H. & Ottmann, C. An optimised small-molecule stabiliser of the 14-3-3–PMA2 protein–protein interaction. Chem. Eur. J.21, 6520–6527 (2012). Google Scholar
Wang, B. et al. Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry38, 12499–12504 (1999). CASPubMed Google Scholar
Wu, H., Ge, J. & Yao, S. Q. Microarray-assisted high-throughput identification of a cell-permeable small-molecule binder of 14-3-3 proteins. Angew. Chem. Int. Ed.49, 6528–6532 (2010). CAS Google Scholar
Corradi, V. et al. Identification of the first non-peptidic small molecule inhibitor of the c-Abl/14-3-3 protein–protein interactions able to drive sensitive and imatinib-resistant leukemia cells to apoptosis. Bioorg. Med. Chem. Lett.20, 6133–6137 (2010). CASPubMed Google Scholar
Brooks, B. R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem.4, 187–217 (1983). CAS Google Scholar
Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics14, 33–38 (1996). CAS Google Scholar
Sherwood, P. et al. QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. J. Mol. Struct. (Teochem)632, 1–28 (2003). CAS Google Scholar
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem.27, 1787–1799 (2006). CASPubMed Google Scholar
Becke, A. D. Density functional thermochemistry. II. The effect of the Perdew–Wang generalized gradient correlation correction. J. Chem. Phys.97, 9173–9177 (1992). CAS Google Scholar
Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys.97, 2571–2577 (1992). Google Scholar
Mackerell, A. D., Feig, M. Jr & Brooks, C. L. III . Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem.25, 1400–1415 (2004). CASPubMed Google Scholar