Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink (original) (raw)
References
Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013). ArticleCAS Google Scholar
Trauger, J. W., Kohli, R. M., Mootz, H. D., Marahiel, M. A. & Walsh, C. T. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature407, 215–218 (2000). ArticleCAS Google Scholar
Duquesne, S. et al. Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. Chem. Biol. 14, 793–803 (2007). ArticleCAS Google Scholar
Dorenbos, R. et al. Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J. Biol. Chem. 277, 16682–16688 (2002). ArticleCAS Google Scholar
Ziemert, N., Ishida, K., Liaimer, A., Hertweck, C. & Dittmann, E. Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Angew. Chem. Int. Ed. 47, 7756–7759 (2008). ArticleCAS Google Scholar
Philmus, B., Christiansen, G., Yoshida, W. Y. & Hemscheidt, T. K. Post-translational modification in microviridin biosynthesis. ChemBioChem9, 3066–3073 (2008). ArticleCAS Google Scholar
Ji, G., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing peptide variants. Science276, 2027–2030 (1997). ArticleCAS Google Scholar
Mayville, P. et al. Structure–activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl Acad. Sci. USA96, 1218–1223 (1999). ArticleCAS Google Scholar
Li, B. et al. Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science311, 1464–1467 (2006). ArticleCAS Google Scholar
Flühe, L. et al. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nature Chem. Biol. 8, 350–357 (2012). Article Google Scholar
Müller, W. M., Schmiederer, T., Ensle, P. & Süssmuth, R. D. In vitro biosynthesis of the prepeptide of type-III lantibiotic labyrinthopeptin A2 including formation of a C–C bond as a post-translational modification. Angew. Chem. Int. Ed. 49, 2436–2440 (2010). Article Google Scholar
Zerbe, K. et al. An oxidative phenol coupling reaction catalyzed by OxyB, a cytochrome P450 from the vancomycin-producing microorganism. Angew. Chem. Int. Ed. 43, 6709–6713 (2004). ArticleCAS Google Scholar
Dunbar, K. L. & Mitchell, D. A. Revealing nature's synthetic potential through the study of ribosomal natural product biosynthesis. ACS Chem. Biol. 8, 473–487 (2013). ArticleCAS Google Scholar
Ibrahim, M. et al. Control of the transcription of a short gene encoding a cyclic peptide in Streptococcus thermophilus: a new quorum-sensing system? J. Bacteriol. 189, 8844–8854 (2007). ArticleCAS Google Scholar
Fleuchot, B. et al. Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. Mol. Microbiol. 80, 1102–1119 (2011). ArticleCAS Google Scholar
Gardan, R., Besset, C., Guillot, A., Gitton, C. & Monnet, V. The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9. J. Bacteriol. 191, 4647–4655 (2009). ArticleCAS Google Scholar
Lyon, W. R., Gibson, C. M. & Caparon, M. G. A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes. EMBO J. 17, 6263–6275 (1998). ArticleCAS Google Scholar
Chaussee, M. S., Ajdic, D. & Ferretti, J. J. The rgg gene of Streptococcus pyogenes NZ131 positively influences extracellular SPE B production. Infect. Immun. 67, 1715–1722 (1999). CASPubMedPubMed Central Google Scholar
Mashburn-Warren, L., Morrison, D. A. & Federle, M. J. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol. Microbiol. 78, 589–606 (2010). ArticleCAS Google Scholar
Fernandez, A., Borges, F., Gintz, B., Decaris, B. & Leblond-Bourget, N. The rggC locus, with a frameshift mutation, is involved in oxidative stress response by Streptococcus thermophilus. Arch. Microbiol. 186, 161–169 (2006). ArticleCAS Google Scholar
Qi, F., Chen, P. & Caufield, P. W. Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in Streptococcus mutans. Appl. Environ. Microbiol. 65, 652–658 (1999). CASPubMedPubMed Central Google Scholar
Kawulka, K. E. et al. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links: formation and reduction of alpha-thio-alpha-amino acid derivatives. Biochemistry43, 3385–3395 (2004). ArticleCAS Google Scholar
Rea, M. C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl Acad. Sci. USA107, 9352–9357 (2010). ArticleCAS Google Scholar
Sit, C. S., McKay, R. T., Hill, C., Ross, R. P. & Vederas, J. C. The 3D structure of thuricin CD, a two-component bacteriocin with cysteine sulfur to α-carbon cross-links. J. Am. Chem. Soc. 133, 7680–7683 (2011). ArticleCAS Google Scholar
Sit, C. S., van Belkum, M. J., McKay, R. T., Worobo, R. W. & Vederas, J. C. The 3D solution structure of thurincin H, a bacteriocin with four sulfur to α-carbon crosslinks. Angew. Chem. Int. Ed. 50, 8718–8721 (2011). ArticleCAS Google Scholar
Güntert, P., Mumenthaler, C. & Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997). Article Google Scholar
Herrmann, T., Güntert, P. & Wüthrich, K. Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR24, 171–189 (2002). ArticleCAS Google Scholar
Haft, D. H. & Basu, M. K. Biological systems discovery in silico: radical S-adenosylmethionine protein families and their target peptides for posttranslational modification. J. Bacteriol. 193, 2745–2755 (2011). ArticleCAS Google Scholar
Haft, D. H. Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners. BMC Genomics12, 21–34 (2011). ArticleCAS Google Scholar
Frey, P. A. & Booker, S. J. Radical mechanisms of S-adenosylmethionine-dependent enzymes. Adv. Protein Chem. 58, 1–45 (2001). ArticleCAS Google Scholar
Booker, S. J. Anaerobic functionalization of unactivated C–H bonds. Curr. Opin. Chem. Biol. 13, 58–73 (2009). ArticleCAS Google Scholar
Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014). ArticleCAS Google Scholar
Fang, Q., Peng, J. & Dierks, T. Post-translational formylglycine modification of bacterial sulfatases by the radical S-adenoyslmethionine protein AtsB. J. Biol. Chem. 279, 14570–14578 (2004). ArticleCAS Google Scholar
Berteau, O., Guillot, A., Benjdia, A. & Rabot, S. A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes. J. Biol. Chem. 281, 22464–22470 (2006). ArticleCAS Google Scholar
Benjdia, A. et al. Anaerobic sulfatase-maturating enzymes: radical SAM enzymes able to catalyze in vitro sulfatase post-translational modification. J. Am. Chem. Soc. 129, 3462–3463 (2007). ArticleCAS Google Scholar
Grove, T. L., Lee, K. H., St Clair, J., Krebs, C. & Booker, S. J. In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe–4S] clusters. Biochemistry47, 7523–7538 (2008). ArticleCAS Google Scholar
Grove, T. L. et al. Further characterization of Cys-type and Ser-type anaerobic sulfatase maturating enzymes suggests a commonality in the mechanism of catalysis. Biochemistry52, 2874–2887 (2013). ArticleCAS Google Scholar
Goldman, P. J. et al. X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification. Proc. Natl Acad. Sci. USA110, 8519–8524 (2013). ArticleCAS Google Scholar
Lanz, N. D. et al. RlmN and AtsB as models for the overproduction and characterization of radical SAM proteins. Methods Enzymol. 516, 125–152 (2012). ArticleCAS Google Scholar
Johnson, D. C., Unciuleac, M. C. & Dean, D. R. Controlled expression and functional analysis of iron–sulfur cluster biosynthetic components within Azotobacter vinelandii. J. Bacteriol. 188, 7551–7561 (2006). ArticleCAS Google Scholar
Wecksler, S. R. et al. Pyrroloquinoline quinon biogenesis: demonstration that PqqE from Klebsiella pneumoniae is a radical S-adenosyl-L-methionine enzyme. Biochemistry48, 10151–10161 (2009). ArticleCAS Google Scholar
Goldman, P. J., Grove, T. L., Booker, S. J. & Drennan, C. L. X-ray analysis of butirosin biosynthetic enzyme BtrN redefines structural motifs for AdoMet radical chemistry. Proc. Natl Acad. Sci. USA110, 15949–15954 (2013). ArticleCAS Google Scholar
Flühe, L. et al. Two [4Fe–4S] clusters containing radical SAM enzyme SkfB catalzye thioether bond formation during the maturation of the sporulation killing factor. J. Am. Chem. Soc. 135, 959–962 (2013). Article Google Scholar
Oman, T. J. & van der Donk, W. A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nature Chem. Biol. 6, 9–18 (2010). ArticleCAS Google Scholar
Wu, W., Lieder, K. W., Reed, G. H. & Frey, P. A. Observation of a second substrate radical intermediate in the reaction of lysine 2,3-aminomutase: a radical centered on the beta-carbon of the alternative substrate, 4-thia-L-lysine. Biochemistry34, 10532–10537 (1995). ArticleCAS Google Scholar
Ruszczycky, M. W., Choi, S. H. & Liu, H. W. Stoichiometry of the redox neutral deamination and oxidative dehydrogenation reactions catalzyed by the radical SAM enzyme DesII. J. Am. Chem. Soc. 132, 2359–2369 (2010). ArticleCAS Google Scholar
Grove, T. L., Ahlum, J. H., Sharma, P., Krebs, C. & Booker, S. J. A consensus mechanism for radical SAM-dependent dehydrogenation? BtrN contains two [4Fe–4S] clusters. Biochemistry49, 3783–3785 (2010). ArticleCAS Google Scholar
Mitchell, J. Streptococcus mitis: walking the line between commensalism and pathogenesis. Mol. Oral Microbiol. 26, 89–98 (2011). ArticleCAS Google Scholar
Le Doare, K. & Heath, P. T. An overview of global GBS epidemiology. Vaccine31, D7–D12 (2013). Article Google Scholar
Fittipaldi, N., Segura, M., Grenier, D. & Gottschalk, M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol. 7, 259–279 (2012). ArticleCAS Google Scholar