A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS (original) (raw)

References

  1. Gerdes, K., Christensen, S.K. & Lobner-Olesen, A. Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371–382 (2005).
    Article CAS PubMed Google Scholar
  2. Hayes, F. & Van Melderen, L. Toxins-antitoxins: diversity, evolution and function. Crit. Rev. Biochem. Mol. Biol. 46, 386–408 (2011).
    Article CAS PubMed Google Scholar
  3. Masuda, H., Tan, Q., Awano, N., Wu, K.-P. & Inouye, M. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol. Microbiol. 84, 979–989 (2012).
    Article CAS PubMed Google Scholar
  4. Ren, D., Bedzyk, L.A., Thomas, S.M., Ye, R.W. & Wood, T.K. Gene expression in Escherichia coli biofilms. Appl. Microbiol. Biotechnol. 64, 515–524 (2004).
    Article CAS PubMed Google Scholar
  5. Kim, Y., Wang, X., Qun, M., Zhang, X.-S. & Wood, T.K. Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J. Bacteriol. 191, 1258–1267 (2009).
    Article CAS PubMed Google Scholar
  6. Kim, Y. & Wood, T.K. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem. Biophys. Res. Commun. 391, 209–213 (2010).
    Article CAS PubMed Google Scholar
  7. Dörr, T., Vulić, M. & Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317 (2010).
    Article PubMed PubMed Central Google Scholar
  8. Hu, Y., Benedik, M.J. & Wood, T.K. Antitoxin DinJ influences the general stress response through transcript stabilizer CspE. Environ. Microbiol. 14, 669–679 (2012).
    Article CAS PubMed Google Scholar
  9. Wang, X. et al. Antitoxin MqsA helps mediate the bacterial general stress response. Nat. Chem. Biol. 7, 359–366 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  10. Wang, X. & Wood, T.K. Toxin/antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl. Environ. Microbiol. 77, 5577–5583 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  11. Amitai, S., Kolodkin-Gal, I., Hananya-Meltabashi, M., Sacher, A. & Engelberg-Kulka, H. Escherichia coli MazF leads to the simultaneous selective synthesis of both “death proteins” and “survival proteins”. PLoS Genet. 5, e1000390 (2009).
    Article PubMed PubMed Central Google Scholar
  12. Belitsky, M. et al. The Escherichia coli extracellular death factor EDF induces the endoribonucleolytic activities of the toxins MazF and ChpBK. Mol. Cell 41, 625–635 (2011).
    Article CAS PubMed Google Scholar
  13. González Barrios, A.F. et al. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J. Bacteriol. 188, 305–316 (2006).
    Article PubMed PubMed Central Google Scholar
  14. Kim, Y. et al. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ. Microbiol. 12, 1105–1121 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  15. Yamaguchi, Y., Park, J.-H. & Inouye, M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J. Biol. Chem. 284, 28746–28753 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  16. Christensen-Dalsgaard, M., Jørgensen, M.G. & Gerdes, K. Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol. Microbiol. 75, 333–348 (2010).
    Article CAS PubMed Google Scholar
  17. Domka, J., Lee, J., Bansal, T. & Wood, T.K. Temporal gene-expression in Escherichia coli K-12 biofilms. Environ. Microbiol. 9, 332–346 (2007).
    Article CAS PubMed Google Scholar
  18. Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5, 48–56 (2007).
    Article CAS PubMed Google Scholar
  19. Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010).
    Article CAS PubMed Google Scholar
  20. Brown, B.L. et al. Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog. 5, e1000706 (2009).
    Article PubMed PubMed Central Google Scholar
  21. Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  22. Correia, F.F. et al. Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. J. Bacteriol. 188, 8360–8367 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  23. Shah, D. et al. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 6, 53 (2006).
    Article PubMed PubMed Central Google Scholar
  24. Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).
    Article CAS PubMed Google Scholar
  25. Hofmann, K. & Stoffel, W. TMBASE—a database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 374, 166 (1993).
    Google Scholar
  26. Faridani, O.R., Nikravesh, A., Pandey, D.P., Gerdes, K. & Good, L. Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli. Nucleic Acids Res. 34, 5915–5922 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  27. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).
    Article PubMed PubMed Central Google Scholar
  28. Van Melderen, L. & Saavedra De Bast, M. Bacterial toxin–antitoxin systems: more than selfish entities? PLoS Genet. 5, e1000437 (2009).
    Article PubMed PubMed Central Google Scholar
  29. Güntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).
    PubMed Google Scholar
  30. Herrmann, T., Guntert, P. & Wuthrich, K. Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR 24, 171–189 (2002).
    Article CAS PubMed Google Scholar
  31. Herrmann, T., Guntert, P. & Wuthrich, K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002).
    Article CAS PubMed Google Scholar
  32. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).
    Article PubMed Google Scholar
  33. Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  34. Orengo, C.A., Jones, D.T. & Thornton, J.M. Protein superfamilies and domain superfolds. Nature 372, 631–634 (1994).
    Article CAS PubMed Google Scholar
  35. Beloglazova, N. et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem. 283, 20361–20371 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  36. Samai, P., Smith, P. & Shuman, S. Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 1552–1556 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  37. Beloglazova, N. et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem. 283, 20361–20371 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  38. Unoson, C. & Wagner, E.G.H. A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol. Microbiol. 70, 258–270 (2008).
    Article CAS PubMed Google Scholar
  39. de la Hoz, A.B. et al. Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proc. Natl. Acad. Sci. USA 97, 728–733 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  40. Donegan, N.P. & Cheung, A.L. Regulation of the mazEF toxin-antitoxin module in Staphylococcus aureus and its impact on sigB expression. J. Bacteriol. 191, 2795–2805 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  41. Jayaraman, R. Bacterial persistence: some new insights into an old phenomenon. J. Biosci. 33, 795–805 (2008).
    Article CAS PubMed Google Scholar
  42. Maisonneuve, E., Shakespeare, L.J., Jørgensen, M.G. & Gerdes, K. Bacterial persistence by RNA endonucleases. Proc. Natl. Acad. Sci. USA 108, 13206–13211 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  43. Gerdes, K. The parB (hok/sok) locus of plasmid R1: a general purpose plasmid stabilization system. Nat. Biotechnol. 6, 1402–1405 (1988).
    Article CAS Google Scholar
  44. Pecota, D.C. & Wood, T.K. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J. Bacteriol. 178, 2044–2050 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  45. Pedersen, K. & Gerdes, K. Multiple hok genes on the chromosome of Escherichia coli. Mol. Microbiol. 32, 1090–1102 (1999).
    Article CAS PubMed Google Scholar
  46. Kwon, A.-R et al. Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease activity. Nucleic Acids Res. 40, 4216–4228 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  47. Donegan, K., Matyac, C., Seidler, R. & Porteous, A. Evaluation of methods for sampling, recovery, and enumeration of bacteria applied to the phylloplane. Appl. Environ. Microbiol. 57, 51–56 (1991).
    CAS PubMed PubMed Central Google Scholar
  48. Fletcher, M. The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can. J. Microbiol. 23, 1–6 (1977).
    Article Google Scholar
  49. Barrios, A.F., Zuo, R., Ren, D. & Wood, T.K. Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility. Biotechnol. Bioeng. 93, 188–200 (2006).
    Article CAS PubMed Google Scholar

Download references