Newman, D.J. & Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod.75, 311–335 (2012). CASPubMedPubMed Central Google Scholar
Arnison, P.G. et al. Ribosomally synthesized and posttranslationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep.30, 108–160 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bindman, N.A. & van der Donk, W.A. A general method for fluorescent labeling of the N-termini of lanthipeptides and its application to visualize their cellular localization. J. Am. Chem. Soc.135, 10362–10371 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cotter, P.D., Ross, R.P. & Hill, C. Bacteriocins—a viable alternative to antibiotics? Nat. Rev. Microbiol.11, 95–105 (2013). ArticleCASPubMed Google Scholar
Oman, T.J. & van der Donk, W.A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat. Chem. Biol.6, 9–18 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ruffner, D.E., Schmidt, E.W. & Heemstra, J.R. Assessing the combinatorial potential of the RiPP cyanobactin tru pathway. ACS Synth. Biol.4, 482–492 (2015). ArticleCASPubMed Google Scholar
Goto, Y., Ito, Y., Kato, Y., Tsunoda, S. & Suga, H. One-pot synthesis of azoline-containing peptides in a cell-free translation system integrated with a posttranslational cyclodehydratase. Chem. Biol.21, 766–774 (2014). ArticleCASPubMed Google Scholar
Deane, C.D., Melby, J.O., Molohon, K.J., Susarrey, A.R. & Mitchell, D.A. Engineering unnatural variants of plantazolicin through codon reprogramming. ACS Chem. Biol.8, 1998–2008 (2013). ArticleCASPubMedPubMed Central Google Scholar
Mitchell, D.A. et al. Structural and functional dissection of the heterocyclic peptide cytotoxin. J. Biol. Chem.284, 13004–13012 (2009). ArticleCASPubMedPubMed Central Google Scholar
Melby, J.O., Nard, N.J. & Mitchell, D.A. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr. Opin. Chem. Biol.15, 369–378 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dunbar, K.L. et al. Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat. Chem. Biol.10, 823–829 (2014). ArticleCASPubMedPubMed Central Google Scholar
Schmidt, E.W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. USA102, 7315–7320 (2005). ArticleCASPubMedPubMed Central Google Scholar
Li, Y.M., Milne, J.C., Madison, L.L., Kolter, R. & Walsh, C.T. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science274, 1188–1193 (1996). ArticleCASPubMed Google Scholar
Dunbar, K.L., Melby, J.O. & Mitchell, D.A. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations. Nat. Chem. Biol.8, 569–575 (2012). ArticleCASPubMedPubMed Central Google Scholar
McIntosh, J.A. & Schmidt, E.W. Marine molecular machines: heterocyclization in cyanobactin biosynthesis. ChemBioChem11, 1413–1421 (2010). ArticleCASPubMedPubMed Central Google Scholar
Burroughs, A.M., Iyer, L.M. & Aravind, L. Natural history of the E1-like superfamily: implication for adenylation, sulfur transfer and ubiquitin conjugation. Proteins75, 895–910 (2009). ArticleCASPubMedPubMed Central Google Scholar
Melby, J.O., Dunbar, K.L., Trinh, N.Q. & Mitchell, D.A. Selectivity, directionality and promiscuity in peptide processing from a Bacillus sp. Al Hakam cyclodehydratase. J. Am. Chem. Soc.134, 5309–5316 (2012). ArticleCASPubMedPubMed Central Google Scholar
Regni, C.A. et al. How the MccB bacterial ancestor of ubiquitin E1 initiates biosynthesis of the microcin C7 antibiotic. EMBO J.28, 1953–1964 (2009). ArticleCASPubMedPubMed Central Google Scholar
McIntosh, J.A., Lin, Z., Tianero, M.D. & Schmidt, E.W. Aestuaramides, a natural library of cyanobactin cyclic peptides resulting from isoprene-derived Claisen rearrangements. ACS Chem. Biol.8, 877–883 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ortega, M.A. et al. Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB. Nature517, 509–512 (2015). ArticleCASPubMed Google Scholar
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). ArticleCASPubMed Google Scholar
Marchler-Bauer, A. et al. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res.41, D348–D352 (2013). ArticleCASPubMed Google Scholar
Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res.33, W244–W248 (2005). ArticlePubMedPubMed Central Google Scholar
Söding, J. Protein homology detection by HMM-HMM comparison. Bioinformatics21, 951–960 (2005). ArticlePubMed Google Scholar
Lopes, A., Amarir-Bouhram, J., Faure, G., Petit, M.A. & Guerois, R. Detection of novel recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote homologs. Nucleic Acids Res.38, 3952–3962 (2010). ArticleCASPubMedPubMed Central Google Scholar
Klinman, J.P. & Bonnot, F. Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ and LTQ. Chem. Rev.114, 4343–4365 (2014). ArticleCASPubMed Google Scholar
Latham, J.A., Iavarone, A.T., Barr, I., Juthani, P.V. & Klinman, J.P. PqqD is a novel peptide chaperone that forms a ternary complex with the radical _S_-adenosylmethionine protein PqqE in the pyrroloquinoline quinone biosynthetic pathway. J. Biol. Chem.290, 12908–12918 (2015). ArticleCASPubMedPubMed Central Google Scholar
Tsai, T.Y., Yang, C.Y., Shih, H.L., Wang, A.H. & Chou, S.H. Xanthomonas campestris PqqD in the pyrroloquinoline quinone biosynthesis operon adopts a novel saddle-like fold that possibly serves as a PQQ carrier. Proteins76, 1042–1048 (2009). ArticleCASPubMed Google Scholar
Wecksler, S.R. et al. Interaction of PqqE and PqqD in the pyrroloquinoline quinone (PQQ) biosynthetic pathway links PqqD to the radical SAM superfamily. Chem. Commun. (Camb.)46, 7031–7033 (2010). ArticleCAS Google Scholar
Li, Y., Zirah, S. & Rebuffat, S. in Lasso Peptides 81–95 (Springer, New York, 2015).
Geer, L.Y., Domrachev, M., Lipman, D.J. & Bryant, S.H. CDART: protein homology by domain architecture. Genome Res.12, 1619–1623 (2002). ArticleCASPubMedPubMed Central Google Scholar
Haft, D.H. A strain-variable bacteriocin in Bacillus anthracis and Bacillus cereus with repeated Cys-Xaa-Xaa motifs. Biol. Direct4, 15 (2009). ArticlePubMedPubMed Central Google Scholar
Dunbar, K.L., Tietz, J.I., Cox, C.L., Burkhart, B.J. & Mitchell, D.A. Identification of an auxiliary leader peptide–binding protein required for azoline formation in ribosomal natural products. J. Am. Chem. Soc. (in the press) (2015).
Bantysh, O. et al. Enzymatic synthesis of bioinformatically predicted microcin C–like compounds encoded by diverse bacteria. MBio5, e01059–14 (2014). ArticlePubMedPubMed Central Google Scholar
Hegemann, J.D., Zimmermann, M., Zhu, S., Klug, D. & Marahiel, M.A. Lasso peptides from proteobacteria: Genome mining employing heterologous expression and mass spectrometry. Biopolymers100, 527–542 (2013). ArticleCASPubMed Google Scholar
Haft, D.H. Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins and its nicotinoprotein redox partners. BMC Genomics12, 21 (2011). ArticleCASPubMedPubMed Central Google Scholar
Haft, D.H. & Basu, M.K. Biological systems discovery in silico: radical _S_-adenosylmethionine protein families and their target peptides for posttranslational modification. J. Bacteriol.193, 2745–2755 (2011). ArticleCASPubMedPubMed Central Google Scholar
Schramma, K.R., Bushin, L.B. & Seyedsayamdost, M.R. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat. Chem.7, 431–437 (2015). ArticleCASPubMedPubMed Central Google Scholar
Goldman, P.J. et al. X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification. Proc. Natl. Acad. Sci. USA110, 8519–8524 (2013). ArticleCASPubMedPubMed Central Google Scholar
Morinaka, B.I. et al. Radical _S_-adenosyl methionine epimerases: regioselective introduction of diverse d-amino acid patterns into peptide natural products. Angew. Chem. Int. Edn Engl.53, 8503–8507 (2014). ArticleCAS Google Scholar
Breil, B.T., Ludden, P.W. & Triplett, E.W. DNA sequence and mutational analysis of genes involved in the production and resistance of the antibiotic peptide trifolitoxin. J. Bacteriol.175, 3693–3702 (1993). ArticleCASPubMedPubMed Central Google Scholar
Breil, B., Borneman, J. & Triplett, E.W. A newly discovered gene, tfuA, involved in the production of the ribosomally synthesized peptide antibiotic trifolitoxin. J. Bacteriol.178, 4150–4156 (1996). ArticleCASPubMedPubMed Central Google Scholar
Molohon, K.J. et al. Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics. ACS Chem. Biol.6, 1307–1313 (2011). ArticleCASPubMedPubMed Central Google Scholar
Morris, R.P. et al. Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu. J. Am. Chem. Soc.131, 5946–5955 (2009). ArticleCASPubMed Google Scholar
Metelev, M. et al. Structure, bioactivity and resistance mechanism of streptomonomicin, an unusual lasso peptide from an understudied halophilic actinomycete. Chem. Biol.22, 241–250 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. et al. Structural and functional insight into an unexpectedly selective N-methyltransferase involved in plantazolicin biosynthesis. Proc. Natl. Acad. Sci. USA110, 12954–12959 (2013). ArticleCASPubMedPubMed Central Google Scholar
Fedorov, A.A., Fedorov, E., Gertler, F. & Almo, S.C. Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nat. Struct. Mol. Biol.6, 661–665 (1999). ArticleCAS Google Scholar
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol.7, 539 (2011). ArticlePubMedPubMed Central Google Scholar
Šali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol.234, 779–815 (1993). ArticlePubMed Google Scholar
Šali, A., Potterton, L., Yuan, F., van Vlijmen, H. & Karplus, M. Evaluation of comparative protein modeling by MODELLER. Proteins23, 318–326 (1995). ArticlePubMed Google Scholar
Atkinson, H.J., Morris, J.H., Ferrin, T.E. & Babbitt, P.C. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS ONE4, e4345 (2009). ArticlePubMedPubMed Central Google Scholar
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13, 2498–2504 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zhao, S. et al. Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks. eLife3, e03275 (2014). ArticlePubMed Central Google Scholar