Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α (original) (raw)
Yamamoto, H. et al. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J. Biol. Chem.274, 10681–10684 (1999). ArticleCAS Google Scholar
Tolwinski, N.S. et al. Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3beta activity. Dev. Cell4, 407–418 (2003). ArticleCAS Google Scholar
Kofron, M. et al. Wnt11/beta-catenin signaling in both oocytes and early embryos acts through LRP6-mediated regulation of axin. Development134, 503–513 (2007). ArticleCAS Google Scholar
Cselenyi, C.S. et al. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin. Proc. Natl. Acad. Sci. USA105, 8032–8037 (2008). ArticleCAS Google Scholar
Barker, N. & Clevers, H. Mining the Wnt pathway for cancer therapeutics. Nat. Rev. Drug Discov.5, 997–1014 (2006). ArticleCAS Google Scholar
Kinzler, K.W. et al. Identification of FAP locus genes from chromosome 5q21. Science253, 661–665 (1991). ArticleCAS Google Scholar
Klaus, A. & Birchmeier, W. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer8, 387–398 (2008). ArticleCAS Google Scholar
Salic, A., Lee, E., Mayer, L. & Kirschner, M.W. Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol. Cell5, 523–532 (2000). ArticleCAS Google Scholar
Hempelmann, E. Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors. Parasitol. Res.100, 671–676 (2007). Article Google Scholar
Downey, A.S., Chong, C.R., Graczyk, T.K. & Sullivan, D.J. Efficacy of pyrvinium pamoate against Cryptosporidium parvum infection in vitro and in a neonatal mouse model. Antimicrob. Agents Chemother.52, 3106–3112 (2008). ArticleCAS Google Scholar
Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell127, 469–480 (2006). ArticleCAS Google Scholar
Xu, Q. et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell116, 883–895 (2004). ArticleCAS Google Scholar
Lustig, B. et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell. Biol.22, 1184–1193 (2002). ArticleCAS Google Scholar
Jho, E.H. et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol.22, 1172–1183 (2002). ArticleCAS Google Scholar
de la Roche, M., Worm, J. & Bienz, M. The function of BCL9 in Wnt/beta-catenin signaling and colorectal cancer cells. BMC Cancer8, 199 (2008). Article Google Scholar
He, T.C. et al. Identification of c-MYC as a target of the APC pathway. Science281, 1509–1512 (1998). ArticleCAS Google Scholar
Miyamoto, D.T., Perlman, Z.E., Burbank, K.S., Groen, A.C. & Mitchison, T.J. The kinesin Eg5 drives poleward microtubule flux in Xenopus laevis egg extract spindles. J. Cell Biol.167, 813–818 (2004). ArticleCAS Google Scholar
Larabell, C.A. et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J. Cell Biol.136, 1123–1136 (1997). ArticleCAS Google Scholar
De Robertis, E.M. & Kuroda, H. Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol.20, 285–308 (2004). ArticleCAS Google Scholar
Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature382, 225–230 (1996). ArticleCAS Google Scholar
Whangbo, J. & Kenyon, C. A Wnt signaling system that specifies two patterns of cell migration in C. elegans. Mol. Cell4, 851–858 (1999). ArticleCAS Google Scholar
Gleason, J.E., Korswagen, H.C. & Eisenmann, D.M. Activation of Wnt signaling bypasses the requirement for RTK/Ras signaling during C. elegans vulval induction. Genes Dev.16, 1281–1290 (2002). ArticleCAS Google Scholar
Korswagen, H.C. et al. The Axin-like protein PRY-1 is a negative regulator of a canonical Wnt pathway in C. elegans. Genes Dev.16, 1291–1302 (2002). ArticleCAS Google Scholar
Lewis, J.A., Wu, C.H., Berg, H. & Levine, J.H. The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics95, 905–928 (1980). CASPubMedPubMed Central Google Scholar
Liu, C. et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell108, 837–847 (2002). ArticleCAS Google Scholar
Gao, Z.H., Seeling, J.M., Hill, V., Yochum, A. & Virshup, D.M. Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proc. Natl. Acad. Sci. USA99, 1182–1187 (2002). ArticleCAS Google Scholar
Pierre, M. & Nunez, J. Multisite phosphorylation of tau proteins from rat brain. Biochem. Biophys. Res. Commun.115, 212–219 (1983). ArticleCAS Google Scholar
Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol.12, 621–637 (2005). ArticleCAS Google Scholar
Price, M.A. CKI, there's more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev.20, 399–410 (2006). ArticleCAS Google Scholar
Bidère, N. et al. Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival. Nature458, 92–96 (2009). Article Google Scholar
Huang, S.M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature461, 614–620 (2009). ArticleCAS Google Scholar
Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol.5, 100–107 (2009). ArticleCAS Google Scholar
Sparks, A.B., Morin, P.J., Vogelstein, B. & Kinzler, K.W. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res.58, 1130–1134 (1998). CASPubMed Google Scholar
Aoki, M., Hecht, A., Kruse, U., Kemler, R. & Vogt, P.K. Nuclear endpoint of Wnt signaling: neoplastic transformation induced by transactivating lymphoid-enhancing factor 1. Proc. Natl. Acad. Sci. USA96, 139–144 (1999). ArticleCAS Google Scholar
Faux, M.C. et al. Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. J. Cell Sci.117, 427–439 (2004). ArticleCAS Google Scholar
Hämmerlein, A., Weiske, J. & Huber, O. A second protein kinase CK1-mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor-1/beta-catenin complex. Cell. Mol. Life Sci.62, 606–618 (2005). Article Google Scholar
Kramps, T. et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell109, 47–60 (2002). ArticleCAS Google Scholar
Thompson, B., Townsley, F., Rosin-Arbesfeld, R., Musisi, H. & Bienz, M. A new nuclear component of the Wnt signalling pathway. Nat. Cell Biol.4, 367–373 (2002). ArticleCAS Google Scholar
Parker, D.S., Jemison, J. & Cadigan, K.M. Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development129, 2565–2576 (2002). CASPubMed Google Scholar
Knippschild, U. et al. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell. Signal.17, 675–689 (2005). ArticleCAS Google Scholar
Esumi, H., Lu, J., Kurashima, Y. & Hanaoka, T. Antitumor activity of pyrvinium pamoate, 6-(dimethylamino)-2-[2-(2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)ethenyl]-1-me thyl-quinolinium pamoate salt, showing preferential cytotoxicity during glucose starvation. Cancer Sci.95, 685–690 (2004). ArticleCAS Google Scholar
Rosenbluth, J.M., Mays, D.J., Pino, M.F., Tang, L.J. & Pietenpol, J.A. A gene signature-based approach identifies mTOR as a regulator of p73. Mol. Cell. Biol.28, 5951–5964 (2008). ArticleCAS Google Scholar
Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell126, 955–968 (2006). ArticleCAS Google Scholar
Yu, D.H. et al. Pyrvinium targets the unfolded protein response to hypoglycemia and its anti-tumor activity is enhanced by combination therapy. PLoS ONE3, e3951 (2008). Article Google Scholar
Jones, J.O. et al. Non-competitive androgen receptor inhibition in vitro and in vivo. Proc. Natl. Acad. Sci. USA106, 7233–7238 (2009). ArticleCAS Google Scholar
Matschinsky, F.M. Assessing the potential of glucokinase activators in diabetes therapy. Nat. Rev. Drug Discov.8, 399–416 (2009). ArticleCAS Google Scholar
Mithani, S.K. et al. Smad3 has a critical role in TGF-beta-mediated growth inhibition and apoptosis in colonic epithelial cells. J. Surg. Res.117, 296–305 (2004). ArticleCAS Google Scholar
Gille, H. et al. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J.14, 951–962 (1995). ArticleCAS Google Scholar
Goenka, S. & Boothby, M. Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor. Proc. Natl. Acad. Sci. USA103, 4210–4215 (2006). ArticleCAS Google Scholar