Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells (original) (raw)
References
Varki, A. & Lowe, J.B. Biological roles of glycans. in Essentials of Glycobiology (eds. Varki, A. et al.) (CSH Press, 2009).
Platt, F.M., Neises, G.R., Dwek, R.A. & Butters, T.D. _N_-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem.269, 8362–8365 (1994). CASPubMed Google Scholar
Lowe, J.B. Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr. Opin. Cell Biol.15, 531–538 (2003). ArticleCASPubMed Google Scholar
Granovsky, M. et al. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med.6, 306–312 (2000). ArticleCASPubMed Google Scholar
Hart, G.W., Housley, M.P. & Slawson, C. Cycling of _O_-linked β-_N_-acetylglucosamine on nucleocytoplasmic proteins. Nature446, 1017–1022 (2007). ArticleCASPubMed Google Scholar
Roquemore, E.P., Chevrier, M.R., Cotter, R.J. & Hart, G.W. Dynamic O-GlcNAcylation of the small heat shock protein α B-crystallin. Biochemistry35, 3578–3586 (1996). ArticleCASPubMed Google Scholar
Yang, X. et al. Phosphoinositide signalling links _O_-GlcNAc transferase to insulin resistance. Nature451, 964–969 (2008). ArticleCASPubMed Google Scholar
Sinclair, D.A. et al. _Drosophila O_-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. USA106, 13427–13432 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zachara, N.E. et al. Dynamic _O_-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem.279, 30133–30142 (2004). ArticleCASPubMed Google Scholar
Slawson, C. et al. Perturbations in O-linked β-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J. Biol. Chem.280, 32944–32956 (2005). ArticleCASPubMed Google Scholar
Caldwell, S.A. et al. Nutrient sensor _O_-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene29, 2831–2842 (2010). ArticleCASPubMed Google Scholar
Yuzwa, S.A. et al. A potent mechanism-inspired _O_-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol.4, 483–490 (2008). ArticleCASPubMed Google Scholar
Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G.W. & Gong, C.X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc. Natl. Acad. Sci. USA101, 10804–10809 (2004). ArticleCASPubMedPubMed Central Google Scholar
Liu, J., Marchase, R.B. & Chatham, J.C. Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis. Am. J. Physiol. Heart Circ. Physiol.293, H1391–H1399 (2007). ArticleCASPubMed Google Scholar
Ngoh, G.A., Hamid, T., Prabhu, S.D. & Jones, S.P. O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death. Am. J. Physiol. Heart Circ. Physiol.297, H1711–H1719 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lyons, S.D., Sant, M.E. & Christopherson, R.I. Cytotoxic mechanisms of glutamine antagonists in mouse L1210 leukemia. J. Biol. Chem.265, 11377–11381 (1990). CASPubMed Google Scholar
Lenzen, S. & Panten, U. Alloxan: history and mechanism of action. Diabetologia31, 337–342 (1988). ArticleCASPubMed Google Scholar
Gross, B.J., Kraybill, B.C. & Walker, S. Discovery of _O_-GlcNAc transferase inhibitors. J. Am. Chem. Soc.127, 14588–14589 (2005). ArticleCASPubMed Google Scholar
Ngoh, G.A., Watson, L.J., Facundo, H.T., Dillmann, W. & Jones, S.P. Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J. Mol. Cell. Cardiol.45, 313–325 (2008). ArticleCASPubMedPubMed Central Google Scholar
Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C. & Reutter, W. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology11, 11R–18R (2001). ArticleCASPubMed Google Scholar
Jones, M.B. et al. Characterization of the cellular uptake and metabolic conversion of acetylated _N_-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng.85, 394–405 (2004). ArticleCASPubMed Google Scholar
Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA100, 9116–9121 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yuasa, H., Izumi, M. & Hashimoto, H. Thiasugars: potential glycosidase inhibitors. Curr. Top. Med. Chem.9, 76–86 (2009). ArticleCASPubMed Google Scholar
Tsuruta, O., Shinohara, G., Yuasa, H. & Hashimoto, H. UDP-_N_-acetyl-5-thio-galactosamine is a substrate of lactose synthase. Bioorg. Med. Chem. Lett.7, 2523–2526 (1997). ArticleCAS Google Scholar
Tsuruta, O. et al. Synthesis of GDP-5-thiosugars and their use as glycosyl donor substrates for glycosyltransferases. J. Org. Chem.68, 6400–6406 (2003). ArticleCASPubMed Google Scholar
Offen, W. et al. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J.25, 1396–1405 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lambert, J.B. & Wharry, S.M. Conformational-analysis of 5-thio-D-glucose. J. Org. Chem.46, 3193–3196 (1981). ArticleCAS Google Scholar
Zhao, G., Guan, W., Cai, L. & Wang, P.G. Enzymatic route to preparative-scale synthesis of UDP-GlcNAc/GalNAc, their analogues and GDP-fucose. Nat. Protoc.5, 636–646 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tanahashi, E., Kiso, M. & Hasegawa, A. A facile synthesis of 2-acetamido-2-deoxy-5-thio-D-glucopyranose. Carbohydr. Res.117, 304–308 (1983). ArticleCAS Google Scholar
Davis, L.I. & Blobel, G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl. Acad. Sci. USA84, 7552–7556 (1987). ArticleCASPubMedPubMed Central Google Scholar
Lubas, W.A., Smith, M., Starr, C.M. & Hanover, J.A. Analysis of nuclear pore protein p62 glycosylation. Biochemistry34, 1686–1694 (1995). ArticleCASPubMed Google Scholar
Greig, I.R., Macauley, M.S., Williams, I.H. & Vocadlo, D.J. Probing synergy between two catalytic strategies in the glycoside hydrolase O-GlcNAcase using multiple linear free energy relationships. J. Am. Chem. Soc.131, 13415–13422 (2009). ArticleCASPubMed Google Scholar
Martinez-Fleites, C. et al. Structure of an _O_-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nat. Struct. Mol. Biol.15, 764–765 (2008). ArticleCASPubMed Google Scholar
Khidekel, N. et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat. Chem. Biol.3, 339–348 (2007). ArticleCASPubMed Google Scholar
O'Donnell, N., Zachara, N.E., Hart, G.W. & Marth, J.D. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol.24, 1680–1690 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dennis, R.J. et al. Structure and mechanism of a bacterial β-glucosaminidase having O-GlcNAcase activity. Nat. Struct. Mol. Biol.13, 365–371 (2006). ArticleCASPubMed Google Scholar
Csuk, R. & Glanzer, B.I. A short synthesis of 2-acetamido-2-deoxy-5-thio-D-glucose and D-mannose from 5-thio-glucal. J. Chem. Soc. Chem. Commun. 343–344 (1986).
Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science287, 2007–2010 (2000). ArticleCASPubMed Google Scholar
Boehmelt, G. et al. Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J.19, 5092–5104 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sarkar, A.K., Fritz, T.A., Taylor, W.H. & Esko, J.D. Disaccharide uptake and priming in animal cells: inhibition of sialyl Lewis X by acetylated Gal β 1→4GlcNAc β-_O_-naphthalenemethanol. Proc. Natl. Acad. Sci. USA92, 3323–3327 (1995). ArticleCASPubMedPubMed Central Google Scholar
Ralton, J.E., Milne, K.G., Guther, M.L., Field, R.A. & Ferguson, M.A. The mechanism of inhibition of glycosylphosphatidylinositol anchor biosynthesis in Trypanosoma brucei by mannosamine. J. Biol. Chem.268, 24183–24189 (1993). CASPubMed Google Scholar
Pesnot, T., Jorgensen, R., Palcic, M.M. & Wagner, G.K. Structural and mechanistic basis for a new mode of glycosyltransferase inhibition. Nat. Chem. Biol.6, 321–323 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lee, K.Y. et al. The hexapeptide inhibitor of Galβ1,3GalNAc-specific α2,3-sialyltransferase as a generic inhibitor of sialyltransferases. J. Biol. Chem.277, 49341–49351 (2002). ArticleCASPubMed Google Scholar
Schneider, E.G., Nguyen, H.T. & Lennarz, W.J. The effect of tunicamycin, an inhibitor of protein glycosylation, on embryonic development in the sea urchin. J. Biol. Chem.253, 2348–2355 (1978). CASPubMed Google Scholar
Hinderlich, S., Berger, M., Schwarzkopf, M., Effertz, K. & Reutter, W. Molecular cloning and characterization of murine and human _N_-acetylglucosamine kinase. Eur. J. Biochem.267, 3301–3308 (2000). ArticleCASPubMed Google Scholar
Mio, T., Yamada-Okabe, T., Arisawa, M. & Yamada-Okabe, H. Functional cloning and mutational analysis of the human cDNA for phosphoacetylglucosamine mutase: identification of the amino acid residues essential for the catalysis. Biochim. Biophys. Acta1492, 369–376 (2000). ArticleCASPubMed Google Scholar
Bourgeaux, V., Piller, F. & Piller, V. Two-step enzymatic synthesis of UDP-_N_-acetylgalactosamine. Bioorg. Med. Chem. Lett.15, 5459–5462 (2005). ArticleCASPubMed Google Scholar
Macauley, M.S., Stubbs, K.A. & Vocadlo, D.J. O-GlcNAcase catalyzes cleavage of thioglycosides without general acid catalysis. J. Am. Chem. Soc.127, 17202–17203 (2005). ArticleCASPubMed Google Scholar