Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells (original) (raw)

References

  1. Varki, A. & Lowe, J.B. Biological roles of glycans. in Essentials of Glycobiology (eds. Varki, A. et al.) (CSH Press, 2009).
  2. Platt, F.M., Neises, G.R., Dwek, R.A. & Butters, T.D. _N_-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem. 269, 8362–8365 (1994).
    CAS PubMed Google Scholar
  3. Lowe, J.B. Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr. Opin. Cell Biol. 15, 531–538 (2003).
    Article CAS PubMed Google Scholar
  4. Granovsky, M. et al. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med. 6, 306–312 (2000).
    Article CAS PubMed Google Scholar
  5. Hart, G.W., Housley, M.P. & Slawson, C. Cycling of _O_-linked β-_N_-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).
    Article CAS PubMed Google Scholar
  6. Roquemore, E.P., Chevrier, M.R., Cotter, R.J. & Hart, G.W. Dynamic O-GlcNAcylation of the small heat shock protein α B-crystallin. Biochemistry 35, 3578–3586 (1996).
    Article CAS PubMed Google Scholar
  7. Yang, X. et al. Phosphoinositide signalling links _O_-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).
    Article CAS PubMed Google Scholar
  8. Sinclair, D.A. et al. _Drosophila O_-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. USA 106, 13427–13432 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  9. Zachara, N.E. et al. Dynamic _O_-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem. 279, 30133–30142 (2004).
    Article CAS PubMed Google Scholar
  10. Slawson, C. et al. Perturbations in O-linked β-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J. Biol. Chem. 280, 32944–32956 (2005).
    Article CAS PubMed Google Scholar
  11. Caldwell, S.A. et al. Nutrient sensor _O_-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 29, 2831–2842 (2010).
    Article CAS PubMed Google Scholar
  12. Yuzwa, S.A. et al. A potent mechanism-inspired _O_-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol. 4, 483–490 (2008).
    Article CAS PubMed Google Scholar
  13. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G.W. & Gong, C.X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 101, 10804–10809 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  14. Liu, J., Marchase, R.B. & Chatham, J.C. Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis. Am. J. Physiol. Heart Circ. Physiol. 293, H1391–H1399 (2007).
    Article CAS PubMed Google Scholar
  15. Ngoh, G.A., Hamid, T., Prabhu, S.D. & Jones, S.P. O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death. Am. J. Physiol. Heart Circ. Physiol. 297, H1711–H1719 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  16. Lyons, S.D., Sant, M.E. & Christopherson, R.I. Cytotoxic mechanisms of glutamine antagonists in mouse L1210 leukemia. J. Biol. Chem. 265, 11377–11381 (1990).
    CAS PubMed Google Scholar
  17. Lenzen, S. & Panten, U. Alloxan: history and mechanism of action. Diabetologia 31, 337–342 (1988).
    Article CAS PubMed Google Scholar
  18. Gross, B.J., Kraybill, B.C. & Walker, S. Discovery of _O_-GlcNAc transferase inhibitors. J. Am. Chem. Soc. 127, 14588–14589 (2005).
    Article CAS PubMed Google Scholar
  19. Ngoh, G.A., Watson, L.J., Facundo, H.T., Dillmann, W. & Jones, S.P. Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J. Mol. Cell. Cardiol. 45, 313–325 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  20. Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C. & Reutter, W. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11, 11R–18R (2001).
    Article CAS PubMed Google Scholar
  21. Agard, N.J. & Bertozzi, C.R. Chemical approaches to perturb, profile, and perceive glycans. Acc. Chem. Res. 42, 788–797 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  22. Jones, M.B. et al. Characterization of the cellular uptake and metabolic conversion of acetylated _N_-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng. 85, 394–405 (2004).
    Article CAS PubMed Google Scholar
  23. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  24. Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).
    Article CAS PubMed Google Scholar
  25. Yuasa, H., Izumi, M. & Hashimoto, H. Thiasugars: potential glycosidase inhibitors. Curr. Top. Med. Chem. 9, 76–86 (2009).
    Article CAS PubMed Google Scholar
  26. Tsuruta, O., Shinohara, G., Yuasa, H. & Hashimoto, H. UDP-_N_-acetyl-5-thio-galactosamine is a substrate of lactose synthase. Bioorg. Med. Chem. Lett. 7, 2523–2526 (1997).
    Article CAS Google Scholar
  27. Tsuruta, O. et al. Synthesis of GDP-5-thiosugars and their use as glycosyl donor substrates for glycosyltransferases. J. Org. Chem. 68, 6400–6406 (2003).
    Article CAS PubMed Google Scholar
  28. Offen, W. et al. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J. 25, 1396–1405 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  29. Lambert, J.B. & Wharry, S.M. Conformational-analysis of 5-thio-D-glucose. J. Org. Chem. 46, 3193–3196 (1981).
    Article CAS Google Scholar
  30. Zhao, G., Guan, W., Cai, L. & Wang, P.G. Enzymatic route to preparative-scale synthesis of UDP-GlcNAc/GalNAc, their analogues and GDP-fucose. Nat. Protoc. 5, 636–646 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  31. Tanahashi, E., Kiso, M. & Hasegawa, A. A facile synthesis of 2-acetamido-2-deoxy-5-thio-D-glucopyranose. Carbohydr. Res. 117, 304–308 (1983).
    Article CAS Google Scholar
  32. Davis, L.I. & Blobel, G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl. Acad. Sci. USA 84, 7552–7556 (1987).
    Article CAS PubMed PubMed Central Google Scholar
  33. Lubas, W.A., Smith, M., Starr, C.M. & Hanover, J.A. Analysis of nuclear pore protein p62 glycosylation. Biochemistry 34, 1686–1694 (1995).
    Article CAS PubMed Google Scholar
  34. Greig, I.R., Macauley, M.S., Williams, I.H. & Vocadlo, D.J. Probing synergy between two catalytic strategies in the glycoside hydrolase O-GlcNAcase using multiple linear free energy relationships. J. Am. Chem. Soc. 131, 13415–13422 (2009).
    Article CAS PubMed Google Scholar
  35. Martinez-Fleites, C. et al. Structure of an _O_-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nat. Struct. Mol. Biol. 15, 764–765 (2008).
    Article CAS PubMed Google Scholar
  36. Khidekel, N. et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat. Chem. Biol. 3, 339–348 (2007).
    Article CAS PubMed Google Scholar
  37. O'Donnell, N., Zachara, N.E., Hart, G.W. & Marth, J.D. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24, 1680–1690 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  38. Dennis, R.J. et al. Structure and mechanism of a bacterial β-glucosaminidase having O-GlcNAcase activity. Nat. Struct. Mol. Biol. 13, 365–371 (2006).
    Article CAS PubMed Google Scholar
  39. Csuk, R. & Glanzer, B.I. A short synthesis of 2-acetamido-2-deoxy-5-thio-D-glucose and D-mannose from 5-thio-glucal. J. Chem. Soc. Chem. Commun. 343–344 (1986).
  40. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).
    Article CAS PubMed Google Scholar
  41. Boehmelt, G. et al. Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J. 19, 5092–5104 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  42. Sarkar, A.K., Fritz, T.A., Taylor, W.H. & Esko, J.D. Disaccharide uptake and priming in animal cells: inhibition of sialyl Lewis X by acetylated Gal β 1→4GlcNAc β-_O_-naphthalenemethanol. Proc. Natl. Acad. Sci. USA 92, 3323–3327 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  43. Ralton, J.E., Milne, K.G., Guther, M.L., Field, R.A. & Ferguson, M.A. The mechanism of inhibition of glycosylphosphatidylinositol anchor biosynthesis in Trypanosoma brucei by mannosamine. J. Biol. Chem. 268, 24183–24189 (1993).
    CAS PubMed Google Scholar
  44. Pesnot, T., Jorgensen, R., Palcic, M.M. & Wagner, G.K. Structural and mechanistic basis for a new mode of glycosyltransferase inhibition. Nat. Chem. Biol. 6, 321–323 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  45. Lee, K.Y. et al. The hexapeptide inhibitor of Galβ1,3GalNAc-specific α2,3-sialyltransferase as a generic inhibitor of sialyltransferases. J. Biol. Chem. 277, 49341–49351 (2002).
    Article CAS PubMed Google Scholar
  46. Schneider, E.G., Nguyen, H.T. & Lennarz, W.J. The effect of tunicamycin, an inhibitor of protein glycosylation, on embryonic development in the sea urchin. J. Biol. Chem. 253, 2348–2355 (1978).
    CAS PubMed Google Scholar
  47. Hinderlich, S., Berger, M., Schwarzkopf, M., Effertz, K. & Reutter, W. Molecular cloning and characterization of murine and human _N_-acetylglucosamine kinase. Eur. J. Biochem. 267, 3301–3308 (2000).
    Article CAS PubMed Google Scholar
  48. Mio, T., Yamada-Okabe, T., Arisawa, M. & Yamada-Okabe, H. Functional cloning and mutational analysis of the human cDNA for phosphoacetylglucosamine mutase: identification of the amino acid residues essential for the catalysis. Biochim. Biophys. Acta 1492, 369–376 (2000).
    Article CAS PubMed Google Scholar
  49. Bourgeaux, V., Piller, F. & Piller, V. Two-step enzymatic synthesis of UDP-_N_-acetylgalactosamine. Bioorg. Med. Chem. Lett. 15, 5459–5462 (2005).
    Article CAS PubMed Google Scholar
  50. Macauley, M.S., Stubbs, K.A. & Vocadlo, D.J. O-GlcNAcase catalyzes cleavage of thioglycosides without general acid catalysis. J. Am. Chem. Soc. 127, 17202–17203 (2005).
    Article CAS PubMed Google Scholar

Download references